Линии учебников, реализующие идеи развивающего обучения

Мардахаева Елена Львовна, кандидат педагогических наук, доцент

Особенности линии УМК:

- Изложение материала направлено на постановку проблемных заданий, что способствует формированию и развитию мышления учащихся.
- Реализован задачный подход, при котором основным средством включения учащихся в активную познавательную деятельность являются учебные задачи.
- Созданы дидактические условия для качественной предметной подготовки всех учащихся, необходимой для продолжения математического образования в 7-9 классах основной школы.
- Разнообразное методическое наполнение комплекта: рабочие тетради, тестовые задания, пособие по наглядной геометрии.

Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..

Удобная навигация по учебнику

- новая информация;
- повторяем;
- самоконтроль;
- работа с угольником, транспортиром, линейкой;
- работа в паре;
- обсуждаем, выбираем, доказываем;
- поиск информации по истории математики.
- дополнительные вопросы;
- задания повышенной сложности;
- исследовательские задания.

Глава

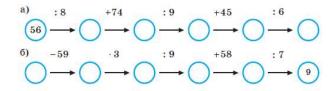
НАТУРАЛЬНЫЕ ЧИСЛА И НУЛЬ

- §1 Запись чисел в десятичной системе счисления
- В начальной школе каждый из вас познакомился с десятичной системой счисления, в которой для записи чисел и выполнения действий с ними используют 10 знаков (цифр): 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. В записи числа цифра занимает определённое место (позицию) и обозначает количество единиц того разряда, в котором она записана. Поэтому десятичную систему счисления называют позиционной.
- Числа, которые используют при счёте предметов, называют натуральными. 1 (единица) наименьшее натуральное число. За каждым натуральным числом следует число, которое на 1 больше.
- 148. a) Можно ли назвать наибольшее натуральное число? Наименьшее натуральное число? Наибольшее пятизначное число? Наименьшее шестизначное число?
 - б) Верно ли утверждение, что у каждого числа в натуральном ряду есть предшествующее натуральное число? Последующее натуральное число?
- Почему цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 называют арабскими?

Найди информацию об арабских цифрах, пройдя по ссылке https://megabook.ru/article/Арабские% 20цифры.

Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..


Изложение материала направлено на постановку **проблемных заданий**, что способствует формированию и развитию мышления учащихся.

• Объяснительный текст чередуется с заданиями.

30

- 39. Участок дороги длиной 2 км, на котором скорость автомобиля не должна превышать 60 км/ч, водитель проехал за 2 мин. Нарушил ли водитель правила?
- 40. В двух читальных залах находилось 48 человек. Когда в первый зал пришло ещё 16 человек, а во второй — 18, то в обоих залах читателей стало поровну. Сколько человек было в каждом читальном зале сначала?
- 41. Используя схему, выполни арифметические действия:

42. Верно ли утверждение, что значения всех выражений одинаковы:

6) 0: (98941 - 98005);

B) (807932 + 10800) · 0: 145?

- 43. Можно ли, не вычисляя значений выражений, сказать, значение какой суммы в каждой паре больше и на сколь
 - a) 59 + 38.
- 6) 20 + 54
- B) 36 + 17,

- 59 + 30;
- 27 + 54;
- 36 + 10;
- Проверь свой ответ, вычислив значения выра
- 44. Найди значение суммы 67 + 24.

Миша выполнил такие вычисления: 67 + 20 + 4 = 91.

Mawa — такие: 70 + 24 - 3 = 91.

Объясни, как рассуждали Миша и Маша.

- Вычисли значение выражения, рассуждая, как М
- a) 68 + 25;
- B) 46 + 47;
- д) 570 + 340;

- 6)89+13;
- r) 59 + 36;
- e) 690 + 290.

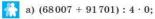
Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..

Организация учебной деятельности школьников через систему учебных заданий:

Задания для организации групповой работы.

42. Верно ли утверждение, что значения всех выражений одинаковы:



- a) (68007 + 91701): 4 · 0;
- б) 0: (98941 98005);
- B) (807932 + 10800) · 0: 145?

- 39. Участок дороги длиной 2 км, на котором скорость автомобиля не должна превышать 60 км/ч, водитель проехал за 2 мин. Нарушил ли водитель правила?
- 40. В двух читальных залах находилось 48 человек. Когда в первый зал пришло ещё 16 человек, а во второй — 18, то в обоих залах читателей стало поровну. Сколько человек было в каждом читальном зале сначала?
- 41. Используя схему, выполни арифметические действия:

42. Верно ли утверждение, что значения всех выражений одинаковы:

б) 0 : (98941 - 98005);

B) (807932 + 10800) · 0: 145?

43. Можно ли, не вычисляя значений выражений, какой суммы в каждой паре больше и на сколь

a) 59 + 38,

6) 20 + 54,

B) 36 + 17,

59 + 30;

27 + 54;

36 + 10;

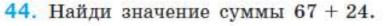
- Проверь свой ответ, вычислив значения выр
- 44. Найди значение суммы 67 + 24.

Миша выполнил такие вычисления: 67 + 20 + 4 = 91.

Mawa — такие: 70 + 24 - 3 = 91.

Объясни, как рассуждали Миша и Маша.

- Вычисли значение выражения, рассуждая, как М
- a) 68 + 25;
- B) 46 + 47;
- д) 570 + 340;


- 6)89+13;
- r) 59 + 36;
- e) 690 + 290.

Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..

Организация учебной деятельности школьников через систему учебных заданий:

Диалоги между Машей и Мишей позволяют снять психологические проблемы с восприятием сложного материала, направить мышление учащихся.

Миша выполнил такие вычисления:

Mawa — такие: 70 + 24 - 3 = 91.

Объясни, как рассуждали Миша и Маша.

- У Коли 70 р. Сможет ли он купить ручку за 11 р. и две тетради по 29 р.?
- 8. Чтобы поставить забор на участок квадратной формы, нужно по каждой его стороне установить по 8 столбов. Сколько всего нужно столбов?
- Сто тридцать килограммов орехов разложили в 2 мешка. Какова масса каждого мешка, если один мешок с орехами тяжелее другого на 40 кг?

Нарисуй схему, она поможет решить задачу.

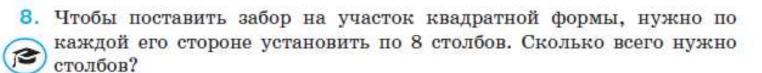
- 10. В некоторых источниках упоминается, что когда великому математику К.Ф. Гауссу было 9 лет, он нашёл сумму чисел от 1 до 100 всего за одну минуту. Как действовал мальчик?
- ы всего за одну минуту. Как действовал мальчик?
 Найди информацию о К.Ф. Гауссе в энциклопедии

Найди информацию о К.Ф. Гауссе в энциклопедии «Википедия» (https://ru.wikipedia.org/wiki/Гаусс_Карл_Фридрих).

11. Найди сумму чисел:

11, 12, 13, 14, 15, 16, 17, 18, 19.

Полученный результат: а) увеличь в 4 раза; б) уменьши в 9 раз; в) увеличь на 17; г) уменьши на 6.


- Периметр прямоугольника 24 см, ширина 30 м длина прямоугольника больше его ширины?
- Квадрат разрезали на 4 равные части. Чем площадь каждой части, если периметр квадрата
- Сабир подарил Серёже 37 марок, а Мурату 2 ко меньше марок стало у Сабира?
- 15. Из класса вышло 12 учеников. После этого в классе осталось на 3 ученика больше, чем вышло. Сколько учеников было в классе?
- 16. В семи одинаковых коробках 105 кг печенья. Сколько понадобится таких коробок, чтобы разложить 165 кг печенья? Сколько килограммов печенья поместится в 14 таких же коробках?

Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..

• Задания исследовательского характера.

- 7. У Коли 70 р. Сможет ли он купить ручку за 11 р. и две тетради по 29 р.?
- 8. Чтобы поставить забор на участок квадратной формы, нужно по каждой его стороне установить по 8 столбов. Сколько всего нужно столбов?
- 9. Сто тридцать килограммов орехов разложили в 2 мешка. Какова масса каждого мешка, если один мешок с орехами тяжелее другого на 40 кг?

Нарисуй схему, она поможет решить задачу.

- 10. В некоторых источниках упоминается, что когда великому матема-🚍 тику К.Ф. Гауссу было 9 лет, он нашёл сумму чисел от 1 до 100 ? всего за одну минуту. Как действовал мальчик?
 - Найди информацию о К.Ф. Гауссе в энциклопедии «Википедия» (https://ru.wikipedia.org/wiki/Гаусс Карл Фридрих).

11. Найди сумму чисел:

11, 12, 13, 14, 15, 16, 17, 18, 19.

Полученный результат: а) увеличь в 4 раза; б) уменьши в 9 раз; в) увеличь на 17; г) уменьши на 6.

- 12. Периметр прямоугольника 24 см, ширина 30 м длина прямоугольника больше его ширины?
- 13. Квадрат разрезали на 4 равные части. Чег площадь каждой части, если периметр квадрат
- 14. Сабир подарил Серёже 37 марок, а Мурату ко меньше марок стало у Сабира?
- 15. Из класса вышло 12 учеников. После этого в 3 ученика больше, чем вышло. Сколько учени
- 16. В семи одинаковых коробках 105 кг печенья. С таких коробок, чтобы разложить 165 кг печен граммов печенья поместится в 14 таких же ко

Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..

Организация учебной деятельности школьников через систему учебных заданий:

Задания для самостоятельной работы с материалом по истории математики.

10. В некоторых источниках упоминается, что когда великому математику К.Ф. Гауссу было 9 лет, он нашёл сумму чисел от 1 до 100 всего за одну минуту. Как действовал мальчик?

Найди информацию о К.Ф. Гауссе в энциклопедии «Википедия» (https://ru.wikipedia.org/wiki/Гаусс Карл Фридрих).

ОГЛАВЛЕНИЕ

Проверь себя! Чему ты научился в начальной школе? 4
Глава I. НАТУРАЛЬНЫЕ ЧИСЛА И НУЛЬ
§ 1. Запись чисел в десятичной системе счисления 30
§ 2. Числовые и буквенные выражения. Уравнения
§ 3. Изображение натуральных чисел и нуля на координатном луче
§ 4. Округление натуральных чисел
§ 5. Делители и кратные
§ 6. Простые и составные числа
§ 7. Делимость произведения
§ 8. Делимость суммы и разности
§ 9. Признаки делимости
§ 10. Разложение натурального числа на простые множители
§ 11. Наибольший общий делитель. Взаимно простые числа 90
§ 12. Наименьшее общее кратное
§ 13. Степень числа
§ 14. Многогранники
Глава И. ОБЫКНОВЕННЫЕ ДРОБИ
§ 15. Дробь как часть целого числа
§ 16. Дробь как результат деления натуральных чисел 119
§ 17. Правильные и неправильные дроби. Смешанные числа
§ 18. Изображение обыкновенных дробей на координатном луче
§19. Основное свойство дроби. Сокращение обыкновенных дробей
§ 20. Сравнение обыкновенных дробей

Авторы:

Истомина Н.Б., Горина О.П., Тихонова Н.Б..

• Созданы дидактические условия для качественной предметной подготовки всех учащихся, необходимой для продолжения математического образования в 7-9 классах основной школы.

Авторы:

Дорофеев Г.В., Петерсон Л.Г. и др.

Алгебра, 7-9

Особенности линии УМК:

- Применение новых знаний осуществляется непрерывно и системно.
- Структура материала позволяет организовать под руководством учителя самостоятельное открытие новых знаний обучающимися.
- Обеспечивается возможность разноуровневого обучения по индивидуальной траектории в зоне ближайшего развития каждого ребёнка (вплоть до углублённого изучения математики в 7-9-х классах).
- Разработана авторская технология деятельностного метода обучения (ТДМ).
- Разнообразное методическое наполнение комплекта: рабочие тетради, самостоятельные и контрольные работы.

Алгебра, 7-9

Математика — это стройное, красивое и прочное здание. По первым этажам этого здания ты прошёл в начальной школе.

5 класс — это новый этап твоего пути вверх, к вершинам знаний, к настоящему жизненному успеху.

Твой путь пройдёт по страницам этого учебника, а надёжным проводником на этом пути будет учитель математики.

Чтобы удобнее было пользоваться учебником, введены следующие обозначения:

Учебник — это не рабочая тетрадь, к которой ты привык в начальной школе. Постарайся ничего не писать на его страницах ручкой. Необходимые пометки можно делать простым карандашом, а после завершения работы — стереть.

Удачи тебе!

АВТОРЫ

© АО «Издательство «Просвещение», 2021

Авторы:

Дорофеев Г.В., Петерсон Л.Г. и др.

Удобная навигация по учебнику

- материал для работы в классе;
- материал для работы дома;
- материал на повторение;
- материал на смекалку.

Задания трёх уровней сложности

- базовые;
- более сложные;
- требующие нестандартного решения.

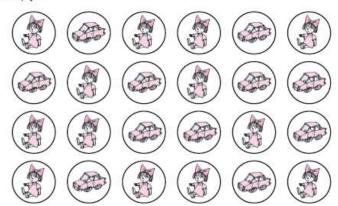
Алгебра, 7-9

Глава 1, §2, п.1

125 Составь программу действий и вычисли:

a) (30 000 - 408 · 25) · (609 · 700 - 417 295);

6) $6304 \cdot 5080 - (5000000 + 14903 \cdot 412) + 42447$.


126 Нарисуй в тетради замкнутую ломаную линию без самопересечений. Раскрась ограниченную ею внутреннюю область. Как называется полученная фигура? Отметь точку A во внутренней области фигуры, точку B – во внешней области, а точку C – на её грапице.

*
На некотором острове отдельными селениями живут два племени, «правдолюбы» и «лжецы».
«Правдолюбы» всегда говорят только правду, а «лжецы» – всегда только неправду. Жители одного племени бывают в селении другого племени, и наоборот.
В одно из селений попал путешественник, но не знает, в какое. Он задал один вопрос первому встречному и сразу установил, где он находится. Что он спросил?

128 Игра «Счёт с препятствиями»

На витрине магазина — куклы и машинки. Ребята решили сосчитать их, но по особому правилу. Считать нужно подряд и куклы, и машинки, например: «Первая кукла, первая машинка, вторая кукла, третья кукла, вторая машинка» и т. д. Попробуй сосчитать таким способом, сколько на витрине кукол, а сколько машинок. Если сразу не получится, вернись к этому заданию ещё и ещё раз.

Авторы:

Дорофеев Г.В., Петерсон Л.Г. и др.

Включены задания трёх уровней:

- Базовые;
- Более сложные;
- Требующие нестандартного решения.
- Материал на смекалку

127 На некотором острове отдельными селениями живут два племени, «правдолюбы» и «лжецы».

«Правдолюбы» всегда говорят только правду, а «лжецы» — всегда только неправду. Жители одного племени бывают в селении другого племени, и наоборот.

В одно из селений попал путешественник, но не знает, в какое. Он задал один вопрос первому встречному и сразу установил, где он находится. Что он спросил?

3

Алгебра, 7-9

Глава 1, §1, п.2_

Задачи для самопроверки.

- 63 Запиши числовое выражение и найди его значение:
 - 1) произведение числа 28 и разности чисел 12 и 7;
 - 2) частное суммы чисел 97 и 43 и произведения чисел 5 и 4.
- 64 Реши задачу, составляя числовое выражение:
 - Автомобиль едет со скоростью 80 км/ч. Какое расстояние ему останется проехать через 3 часа пути, если всего ему надо проехать 400 км?
 - 2) В киоск привезли 5 ящиков с виноградом и 7 ящиков с персиками. Винограда в каждом ящике было 12 кг, а персиков на 4 кг меньше. Сколько всего килограммов винограда и персиков привезли в киоск?
- 65 Найди значение буквенного выражения при данных значениях букв:
 - 1) 68 + a: 5, если a 280:
 - 2) 4b-c, если b-70, c-42.
- 66 Составь буквенное выражение и найди его значение. Есть ли в условиях этих задач лишние данные?
 - 1) В классе n учеников. Каждый ученик принес для библиотеки по 4 книги. Сколько всего книг принесли ученики этого класса в библиотеку? (n-25.)
- 67 Найди значение выражения:

$$56 \cdot 3 - (50 - 2 \cdot 7) : 12 - 68 : (40 : 10).$$

- 68 Запиши число в десятичной системе счисления:
 - 1) сорок пять тысяч девяносто один;
 - 2) восемь миллионов двадцать семь тысяч четыреста;
 - 3) двадцать миллионов восемьсот тридцать шесть тысяч девять;
 - 4) четыре миллиарда пятьсот шестьдесят миллионов две тысячи триста;
 - 5) восемьсот девять миллиардов девяносто пять тысяч семьсот пятнадцать.
- Расположи числа в порядке возрастания: 3045, 30 000 045, 543, 400 503, 30 045, 5340, 405 003, 5403, 435 000.
- 70 Реши уравнение и сделай проверку:

a)
$$x - 528 - 2095$$
:

6) 832 + y - 60308;

B) 14010 - z = 3815.

71 Вычисли:

1) 8 м 36 см – 5 дм 8 см;

3) 2 дм 2 46 см 2 + 18 дм 2 4 см 2 ;

2) 12 km 24 m + 3 km 690 m;

4) 6 ra 17 a - 2 ra 8 a.

16

© АО «Издательство «Просвещение», 2021

Авторы:

Дорофеев Г.В., Петерсон Л.Г. и др.

Включён материал для самоконтроля и рефлексии:

• Каждый параграф заканчивается рубрикой «Задачи для самопроверки».

Алгебра, 7-9

Глава 3, §2, п.1

§ 2. Арифметика дробей

1. Сложение и вычитание дробей.

Складывать и вычитать дроби с одинаковыми знаменателями мы научились еще в начальной школе. Для сложения таких дробей нужно сложить числители, а знаменатель оставить прежним. На математическом языке это правило записывается следующим образом:

Для любых натуральных чисел
$$a,b,c$$
: $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$.

Аналогично, но чуть сложнее записывается правило вычитания дробей с одинаковыми знаменателями;

Для любых натуральных чисел
$$a,b,c$$
 при $a\geqslant b$: $\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$

Что же касается дробей с разными знаменателями, то для их сложения или вычитания достаточно привести их к одному знаменателю. А это можно сделать на основании основного свойства дроби, например:

1)
$$\frac{3}{9} + \frac{2}{14} = \frac{27 + 28}{30} = \frac{55}{30} = \frac{11}{6} = 1\frac{5}{6}$$
; 2) $\frac{5}{6} - \frac{3}{14} = \frac{35 - 27}{42} = \frac{8}{42} = \frac{4}{21}$.

В ответе дробь обычно приводят к несократимому виду, а из неправильной дроби выделяют целую часть.

Для сложения и вычитания дробей верны изученные ранее свойства этих действий. Их использование иногда позволяет упрощать вычисления, например:

1)
$$\frac{4}{99} + \frac{8}{25} + \frac{95}{99} + \frac{7}{25} = \left(\frac{4}{99} + \frac{95}{99}\right) + \left(\frac{8}{25} + \frac{7}{25}\right) = \frac{99}{99} + \frac{15}{25} = 1 + \frac{3}{5} = 1\frac{3}{5}$$
;

2)
$$\left(\frac{5}{6} + \frac{17}{49}\right) - \frac{17}{49} = \frac{5}{6} + \left(\frac{17}{49} - \frac{17}{49}\right) = \frac{5}{6} + 0 = \frac{5}{6}$$
.

Сформулируем на математическом языке общие правила сложения и вычитания дробей. Пусть даны дроби $\frac{a}{b}$ и $\frac{c}{d}$, где $a,b,c,d\in N$. Их общим знаменателем может служить произведение bd — оно делится и на b, и на d. Поэтому

$$\frac{d}{a} + \frac{b}{c} = \frac{ad}{bd} + \frac{bc}{bd} = \frac{ad + bc}{bd}, \quad \frac{a}{b} - \frac{c}{d} = \frac{ad}{bd} - \frac{bc}{bd} = \frac{ad - bc}{bd}$$

Ясно, что вычитание возможно только в случае, когда числитель полученной дроби больше или равен нулю, то есть $ad-bc\geqslant 0$.

Заметим, что общий знаменатель bd для данных дробей далеко ne $scer\partial a$ seлsemcs naumenьшим. Поэтому непосредственное применение этих правил часто ведет к более громоздким вычислениям.

4

© АО «Издательство «Просвещение», 2021

Дорофеев Г.В., Петерсон Л.Г. и др.

• Структура материала позволяет организовать под руководством учителя самостоятельное открытие новых знаний обучающимися;

Обеспечивается возможность разноуровневого обучения по индивидуальной траектории в зоне ближайшего развития каждого ребёнка (вплоть до углублённого изучения математики в 7-9-х классах).

Авторы:

Мордкович А.Г., Семенов П.В.,

математического анализа, 10-11 Александрова Л.А., Мардахаева Е.Л.

Особенности линии УМК:

- Учебник и задачник соединены в одну книгу.
- Курс построен на основе приоритетности функционально-графической линии.
- Порядок тем соответствует ПООП, отражает психологические особенности обучающихся, позволяет сформировать целостное представление о математике, как о методе познания.

Алгебра и начала

- Структура материала способствует формированию функциональной грамотности.
- Каждая глава содержит разделы «Повторение», «Итак, в Главе...», «Вопросы», «Дополнительные задачи», «Из истории математики».
- Трёхуровневая система заданий отражает требования ФГОС ОО, ОГЭ, ЕГЭ.
- Включены задачи практического содержания, высокого уровня сложности; материал, рекомендованный к изучению с использованием ІТ-средств.
- Разнообразное методическое наполнение комплекта: рабочие тетради, практикумы, тренинги, самостоятельные и контрольные работы.

Авторы:

Алгебра и начала

Мордкович А.Г., Семенов П.В., математического анализа, 10-11 Александрова Л.А., Мардахаева Е.Л.

8.6. a) $\begin{cases} \frac{1}{2}x - \frac{2}{3}y = 2, \\ 3x - 2y = -2; \end{cases}$ b) $\begin{cases} \frac{3}{4}x + \frac{1}{3}y \\ -5x + 4y \end{cases}$	= 3, - 8;
$ \begin{cases} \frac{2}{3}x + \frac{4}{5}y = -1, \\ \frac{3}{4}x - \frac{4}{5}y = -\frac{5}{12}; \end{cases} r) \begin{cases} \frac{2}{5}x + \frac{3}{4}y \\ \frac{5}{6}x + \frac{3}{4}y \end{cases} $	$= 5,$ $= \frac{2}{3}.$
$ \begin{array}{l} \mathbf{a} = \frac{1}{x-1} = \frac{9}{3y+2x}, \\ \frac{2x-3y}{x-5} = 3; \end{array} $ $ \begin{array}{l} \mathbf{a} = \frac{9}{3y+2x}, \\ \mathbf{a} = \frac{2}{x+1}, \\ \mathbf{a} = \frac{3y-1}{x-5y} $	Условные обозначения
18.8. a) $\begin{cases} 4(x-y) = 28 + 12y, \\ 5x - (3y+x) = 1-x; \end{cases} \text{ r) } \begin{cases} 18 - 16 \\ 2x - y \end{cases}$ $6) \begin{cases} 3(2x-1) - 4(y+2) = 9, \\ 5(3-x) + 2(3y-2) = 1; \end{cases} \text{ d) } \begin{cases} 7(x+4) \\ 6(x+1) \end{cases}$ $B) \begin{cases} 6\left(\frac{1}{3}x - \frac{1}{2}y\right) = 1 - (x+y), \\ 10\left(\frac{1}{2}x + \frac{2}{5}y\right) = 9; \end{cases} \text{ e) } \begin{cases} 14\left(\frac{3}{7}x\right) \\ 2x + 3 \end{cases}$ 18.9. Прямая $y = kx + m$ проходит через точки уравнение прямой и запишите его в виде $b, c - q$ пелые числа. a) $M(-1; 4), K(2; -1); $ г) $M(-6; 2; 6), M(7; -5), K(-3; 4); $ д) $M(-1; 1; 8), M(2; 3), K(-3; 2); $ е) $M(3; 7)$	24.13. Задачи базового уровня сложности 3адачи повышенного уровня сложности 3адачи высокого уровня сложности Материал может быть рассмотрен с помощью ИКТ-средств Упражнения с общим заданием
8.10. Составьте уравнение прямой, проходящей четочку пересечения прямых $2x + 3y = 12$ и x 8.11. а) Найдите значение параметра p , при котодии $y = px$ проходит через точку пер $6x - y = 13$ и $y = -5x + 20$. 6) Найдите значение параметра p , при котодии $y = px + 1$ проходит через точку пер $6x - y = 13$ и $y = -5x + 20$.	10.12 Окончание доказательства теоремы Окончание решения примера Знаком * отмечен дополнительный материал.

В каждом параграфе даны упражнения трёх уровней сложности: базового, повышенного, высокого.

Выделены задания, предназначенные для использования ІТ-средств.

Авторы:

А.Г. Мордковичи

Алгебра и начала математического анализа, 10-11

Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.

Дополнительные задачи

В упражнениях 1, 2 даны функции y - f(x), где $f(x) - x^2$, и y - g(x), где g(x) - 3x.

1. Сравните числа:

а) f(2) и g(2); б) f(0,5) и g(0,5);

r) f(0,1) и g(0,2); д) f(-2) и g(1);

B) f(3) u g(2); e) $f(2) \times -g(-1)$.

2. Решите уравнение:

a) g(x) - f(-1); 6) g(x) - f(8): B) g(x) - f(-27); r) f(x) - g(1); $\mu(x) - g(4)$; e) f(x) - g(-9).

3. Дана функция y = f(x), где $f(x) = x^2$. Найдите a и b, если известны наименьшее значение т и наибольшее значение М этой функции на отрезке [a; b]:

a) m = 1; $M = 4 \times 0 < a < b$;

6) m = 1; $M = 4 \times a < b < 0$;

B) m = 81; M = 225 H 0 < a < b;

r) $m = 2^6$; $M = 3^4$ u a < b < 0;

g) m = 1,44; $M = 12\frac{1}{4}$ u 0 < a < b;

e) $m = 6\frac{1}{2}$; M = 20,25 u a < b < 0.

4. Дана функция y = h(x), где $h(x) = -x^2$. Найдите a и b, если известны наименьшее значение т и наибольшее значение М этой функции на отрезке [a; b]:

a) m = -9; $M = -1 \times 0 < a < b$;

6) m = -16; M = -9 u a < b < 0;

B) m = -81; M = -2.25 H 0 < a < b;

r) m = -121; M = 0 u a < b < 0;

д) $m = -4^6$; $M = -3^6$ и 0 < a < b;

e) $m = -10^{10}$; $M = -8^8$ u a < b < 0.

5. Дана функция y = f(x), где f(x) = 2x + 5. Найдите:

a) f(f(x)):

r) f(f(2x));

6) f(f(x) + 2); B) f(f(x + 2)); д) f(2f(x));

e) f(f(f(x))).

202

- 25.12. Одно ребро прямоугольного нарадлеленинеда в 3 раза больше другого и в 5 раз меньше третьего. Найдите измерения примоугольного параллеленинеда, если площадь его поверхности равна 126 дм².
- 25.13. На изготовление аквариума, имеющего форму прямоугольного параллеленинеда, потребовалось 1,5 м2 стекла (без верхнего стекла). Найдите размеры аквариума, если отношение длины к ширине и к высоте равно соответственно 9:2:6.

Упражнения для повторения

25.14. Постройте график функции $y = x^2$. Найдите наименьшее и наибольшее значения функции на промежутке: a) [-5; -0.5]; 6) [-1.5; 1]; a) (-3; 2); r) $[-2; +\infty).$

25.15. Упростите выражение:

25.16. Постройте график функции:

a) $y = \frac{x^3}{1}$

§ 26. Умножение одночленов. Возведение одночлена в натуральную степень

С умножением одночленов мы уже знакомы из § 24. Мы знаем, что если между двумя одночленами поставить знак умножения, то снова получится одночлен; остаётся лишь привести его к стандартному виду. В примере, рассмотренном в §24, мы как раз и занимались умножением одночлена на одночлен. А при возведении одночлена в степень используются правила действий со степенями, известные вам из §3.

21

Ориентация на результат.

- В каждой главе «Дополнительные задачи».
- В каждом параграфе имеются упражнения на повторение.

Авторы:

А.Г. Мордкожича

Алгебра и начала

Мордкович А.Г., Семенов П.В., математического анализа, 10-11 _{Александрова} Л.А., Мардахаева Е.Л.

Итак, в главе 4

Пополнили наш словарный запас математического изыка следую-

- парабола, ось (ось симметрии) параболы, ветви параболы, вершина параболы:
- кубическая парабола;
- непрерывная функция, разрыв функции;
- пусочная функция;
- область определения функции;
- чтение графика.

Познакомились с новыми функциями и научились строить их графики: $y = x^2$, $y = -x^2$.

Попивкомились с новым символом математического языка

Разработали алгоритм графического решения уравнения вида

Познакомились с тем, как строить графики кусочных функций.

Вопросы

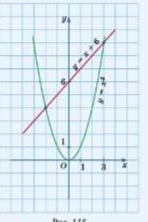
- 1. Как называют график функции $y = x^2$, $y = -x^2$?
- 2. Что является осью симметрии графика функции $y=x^2, y=-x^2$?
- 3. Какую точку называют вершиной параболы $y = x^2$, $y = -x^2$?
- 4. Как расположены относительно друг друга графики функций $y = x^2, y = -x^2$?
- 5. Перечислите свойства функций $y = x^2$, $y = -x^2$.
- 6. Сформулируйте алгоритм графического решения уравнения.

Тест

- 1. Укажите точки, принадлежащие графику функции $y=-x^2$. a) (-2; 4) n) (4; -16) r) (0,1; -0,1) 6) (-2,5; -6,25)

199

2. Для функции $y - x^2$ установите соответствие между значениями xи у, если: B. $x = 1\frac{1}{x}$ A. x = 0.2


3. Найдите наименьшее и наибольшее значения функции $y = x^2$ на

- 4. Найдите наибольшее значение функции $y = -x^2$ на луче
- 5. На рисунке 115 изображено графическое решение уравнения $x^2 - x + 6$. Укажите верное решение уравнения. a) (-2; 4) n (3; 9) B) 4 H 9

6) -2 N 3

1) 1,44

г) (4; -2) и (9; 3)

Puc. 115

200

Включён материал для самоконтроля и рефлексии. Каждая глава заканчивается рубриками:

- «Итак, в Главе ...»;
- «Вопросы»;
- «Тест».

Алгебра и начала математического анализа, 10-11

Авторы:

Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.

Из истории математики

Многочлены (и их составные части, слагаемые-одночлены) традиционно составляли и составляют один из самых распространённых объектов изучения в математике и её приложениях.

Практически все известные математики XVI—XX вв. в той или иной степени занимались исследованием многочленов. Например, основной теоремой алгебры называется утверждение о количестве корней уравнения P(x) = 0, где в левой части стоит многочлен P(x) степени n. История доказательства этой теоремы весьма протяжённа по времени, занимает не менее двух веков и, в определённой степени, может составить одну из центральных линий в изложении всей истории развития математики XVI—XIX вв.

Итальянец Джероламо Кардано (1501—1576) в своей книге «Великое искусство» (1545) подвёл итог достижениям предшественников (дель Ферро, Тарталья) и своим результатам в исследовании многочленов третьей степени. Точнее, не самих многочленов, а приёмов решения уравнений третьей степени. В той же книге изложены результаты Лодовико Феррари (1522—1565) о многочленах четвёртой степени.

Систематическое исследование многочленов первой степени $P_1(x,y)$ (линейных) и второй степени $P_2(x,y)$ (квадратичных) обычно связывают с работами Ферма и Декарта (см. гл. 2). Они первыми предложили общие методы к исследованию кривых первого и второго порядка, т. е. графиков уравнений $P_1(x,y)=0$ и $P_2(x,y)=0$. К концу XVII в. полный перечень типов кривых второго порядка стал уже скорее не научных, а учебным материалом. Впрочем, как геометрические объекты кривые второго порядка (окружность, эллипс, парабола, гипербола) были известны ещё в Древней Греции.

Описание кривых третьего порядка, предложенное Ньютоном около 1668 г. (опубликовано в 1704 г.), составило весьма серьёзное продвижение. Скажем только, что для кривых четвёртого, пятого порядков аналогичные перечисления типов кривых неизвестны и доныне.

На протяжении XVII в. заметно видоизменился и сам математический язык. В начале века уравнение, скажем, $x^3-3x=1$ Вист записывал на языке разработанной им символической алгебры в виде 1C-3N aequatur 1. А в конце века Ньютон в своей «Весеобщей ариф-

 1 Это краткое название. Более полно — «Великое искусство, или О правилах алгебры».

метике» уже оперировал многочленами и алгебраическими выражениями в виле, весьма приближённом к нашим обозначениям.

Изложению материала во «Всеобщей арифметике» Ньютона следовал и Эйлер в своей «Универсальной арифметике». Обе эти книги были основными трактатами для математиков следующего столетия. В них правила действий с одночленами и многочленами приводились на большом перечне примеров, как, собственно, это сделано и в главе 5 нашего учебника.

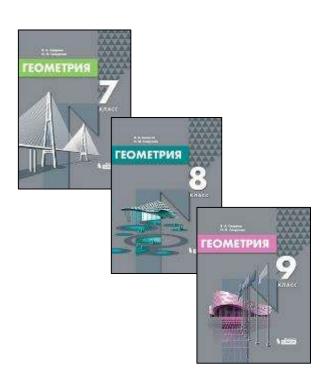
Всё же подчеркнём, что принципиальный и первый по полноте переход от logistica numerosa к logistica speciosa, т. е. от числовых выражений к буквенным, совершил именно Виет. Он же ввёл в употребление и широко использовал понятие коэффициент. Виет для обозначения неизвестных использовал заглавные гласные буквы А, Е, I, О, U, а согласные применял для обозначения заданных величии. Символикой Виета математики, например Ферма, активно пользовались примеено до 1650 г.

Позже Декарт перешёл с заглавных букв на строчные и для неизвестных использовал последние буквы алфавита x, y, z..., а для коэффициентов — первые буквы a, b, c.... Он же показал, что изучение уравнений правильнее проводить, приравняв правую часть к нулю, а для обозначения равенства ввёл специальный знак $\star \infty$. Позже этот знак, принятый во Франции, был вытеснен привычным нам знаком $\star \infty$, который на 100 лет ранее предложил англичании Р. Рекорд (1510—1558). Декарт одним из первых предложил получать многочлены одной переменной в виде произведения линейных двучленов $x \pm a,$ или, другими словами, раскладывать многочлены (если это возможно) в произведение таких двучленов.

В целом правила действий с многочленами в том или ином виде были ясны всем математикам просто по аналогии действий с числами. Специальные названия таких правил появились много позжет термины коммутативный (переместительный) и дистрибутивный (распределительный) были введены в 1815 г. французом Ф. Сервуа (1767—1847), а ассоциативный (сочетательный) в 1843 г. англичаниюм У. Гамильгоном (1805—1865).

Формулы сокращённого умножения, приведённые в главе 5, известны чрезвычайно давно, не менее чем 2500 лет тому назад их использовали в Древней Греции, Египте, Индии, Китае. Формулировались они, разумеется, не в том виде, как в главе 5, а в формате, принятом в той или иной древней цивилизации. Как правило, это были текстовые советы по действию в конкретной задаче или инструкции для некоторого типа задач. Широко использовались и геометрические чертежи, позволяющие понять и запомнить нужное правило.

Включён материал для организации проектной и учебно-исследовательской деятельности. В конце каждой главы содержится раздел:


«Из истории математики».

256

Авторы:

Смирнов В.А., Смирнова И.М.

Особенности линии УМК:

- Содержится большое количество геометрических иллюстраций, задач на построение, на развитие геометрических представлений, использование ІТ-средств.
- Теоретический материал изложен доступно с учётом психологических особенностей обучающихся, от частного к общему, от простого к сложному.
- Система задач ориентирована на достижение результатов обучения, отражает требования ФГОС ООО, ОГЭ.
- Включён дополнительный научно-популярный материал.
- Структура курса направленна на формирование мотивации и интереса к изучению геометрии, функциональной грамотности.
- Осуществляется авторская дистанционная методическая поддержка с помощью цифровых ресурсов.
- Разнообразное методическое наполнение комплекта.

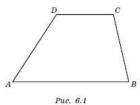
Геометрия, 7-9

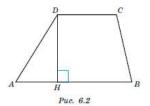
- 11. Меньшая сторона прямоугольника равна 8 см и образует с диагональю этого прямоугольника угол 60°. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного прямоугольника.
- 12. Постройте треугольник, если заданы середины его сторон D, E, F (рис. 5.4).
- 13. Постройте параллелограмм по точке D пересечения его диагоналей и серединам E, F двух смежных сторон (рис. 5.5).

6. Трапеция

Ещё одним специальным видом четырёхугольника является трапеция.

Четырёхугольник, у которого две стороны параллельны, а две другие не параллельны, называется *трапецией* (рис. 6.1).


24

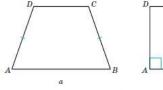

Авторы:

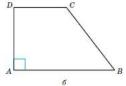
Смирнов В.А., Смирнова И.М.

- Большое число иллюстраций;
- Заданий на клетчатой бумаге;
- Ориентирование на результат.

Параллельные стороны трапеции называются её основаниями, а непараллельные стороны — боковыми сторонами.

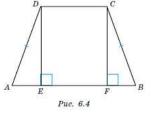
Высотой трапеции называется перпендикуляр, проведённый из её вершины на противолежащее ей основание или его продолжение (рис. 6.2).

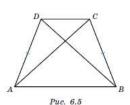

Трапеция называется **равнобе∂ренной**, если её боковые стороны равны (рис. 6.3, a).


Трапеция называется **прямоугольной**, если один из её углов прямой (рис. 6.3, б).

Рассмотрим некоторые свойства равнобедренной трапеции.

Свойство 1. Углы при основании равнобедренной трапеции равны.


Доказательство. Пусть ABCD — равнобедренная трапеция, CD — её меньшее основание (рис. 6.4). Докажем, что углы при основании AB равны.



Puc. 6.3

25

Проведём высоты CF и DE трапеции. Прямоугольные треугольники ADE и BCF равны по гипотенузе и катету (AD=BC, DE=CF). Следовательно, равны углы A и B.

Так как углы A и D, B и C в сумме составляют 180° , то из равенства углов A и B следует также равенство углов D и C.

Свойство 2. Диагонали равнобедренной трапеции равны.

Доказательство. Пусть ABCD — равнобедренная трапеция $(AB \parallel CD)$, AC, BD — её диагонали (рис. 6.5). Треугольники ABC и BAD равны по первому признаку равенства треугольников (AB — общая сторона, BC = AD, $\angle ABC = \angle BAD$). Следовательно, AC = BD.

Вопросы

- 1. Какой четырёхугольник называется трапецией?
- Какие стороны трапеции называются: а) основаниями; б) боковыми сторонами?
- 3. Какая трапеция называется: a) равнобедренной; б) прямоуголь-
- 4. Что называется высотой трапеции?
- Что можно сказать об углах при основании равнобедренной трапеции?
- 6. Что можно сказать о диагоналях равнобедренной трапеции?

26

Авторы:

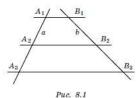
Доступное изложение материала от простого к

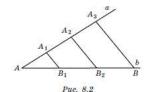
Смирнов В.А., Смирнова И.М.

15. На одной прямой на равном расстоянии друг от друга стоят три телеграфных столба. Первый и второй столбы находятся от дороги на расстоянии один 30 м, а другой 40 м. Найдите расстояние, на котором находится от дороги третий столб (рис. 7.7).

8. Теорема Фалеса

Локажем теорему, которая является обобщением теорем о средних линиях треугольника и трапеции и носит имя древнегреческого учёного Фалеса.


Теорема (Фалеса), Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.


Показательство. Рассмотрим угол со сторонами а. b. Пусть три парадлельные прямые пересекают стороны этого угла соответственно в точках A_1 , A_2 , A_3 и B_1 , B_2 , B_3 (рис. 8.1).

Если отрезки A_1A_2 и A_2A_3 равны, то A_2B_2 — средняя линия трапеции $A_1A_2B_2B_1$. Следовательно, равны и отрезки B_1B_2 и B_2B_3 .

Теорему Фалеса можно использовать для деления отрезка на п равных частей. Например, разделим отрезок АВ на три равные части. Для этого через точку А проведём прямую а, отличную от АВ. и отложим на ней равные отрезки $AA_1 = A_1A_2 = A_2A_3$ (рис. 8.2).

Через точки A_3 и B проведём прямую. Через точки A_1 , A_2 проведём прямые, параллельные прямой A_3B . Точки пересечения этих

32

прямых с отрезком AB обозначим соответственно B_1 , B_2 . По теореме Фалеса $AB_1=B_1B_2=B_2B$. Таким образом, построенные точки B_1 , B_2 делят отрезок AB на три равные части.

Отношением двух отрезков АВ и СВ называется число, показывающее, сколько раз отрезок СД и его части укладываются в от-

Отношение отрезков AB и CD обозначается $\frac{AB}{CD}$ или AB:CD.

Если отрезок CD является единичным, то отношение $\frac{AB}{CD}$ будет равно длине отрезка АВ.

Говорят, что отрезки AB, CD пропорциональны отрезкам A_1B_1 , C_1D_1 , если равны их отношения, т. е. $\frac{AB}{A_1B_1} = \frac{CD}{C_1D_1} = k$. Число kназывается коэффициентом пропорциональности

Теорема (о пропорциональных отрезках). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорпиональные отрезки.

Показательство. Рассмотрим угол с вершиной А, стороны которого пересекаются параллельными прямыми в точках В, С и D, Е (рис. 8.3).

сложному.

Докажем, что имеет место равенство

$$\frac{AC}{AB} = \frac{AE}{AD}$$
.

Отношение $\frac{AC}{AB}$ показывает, сколько раз отрезок AB укладывается в отрезке AC. Отношение $\frac{AE}{AD}$ показывает, сколько раз отрезок AD укладывается в отрезке AE. Используя теорему Фалеса, установим соответствие между процессами измерения длин отрезков АВ и АС. Прямые, парадлельные ВД, переводят равные отрезки на прямой AC в равные отрезки на прямой AE. Отрезку AB со-

ответствует отрезок AD. Одной десятой части отрезка AB соответствует одна десятая часть отрезка AD и т. д. Таким образом, если отрезок AB и его части укладываются в отрезке AC k раз, то отревок AD и его части будут укладываться в отрезке AE также k раз, T. e. $\frac{AC}{AB} = \frac{AE}{AD} = k$.

Следствие. Если стороны угла А пересекаются параллельными прямыми в точках В, С и D, Е (см. рис. 8.3), то имеет место

$$\frac{BC}{AB} = \frac{DI}{AB}$$

Доказательство. Заметим, что в этом случае имеют место равенства

$$AC = AB + BC \text{ if } AE = AD + DE.$$

Подставляя их в равенство

$$\frac{AC}{AB} = \frac{AE}{AD}$$

получим равенство

$$1 + \frac{BC}{AB} = 1 + \frac{DE}{AD},$$

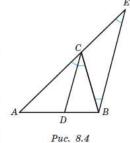
из которого и вытекает требуемое равенство.

Используя это следствие, докажем следующее важное свойство биссектрисы треугольника.

Теорема. Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам.

Доказательство. Рассмотрим треугольник АВС и его биссектри-

Докажем, что выполняется равенство $\frac{AD}{DR} = \frac{AC}{RC}$. Через верши-


ну В проведём прямую, парадлельную прямой СД, Обозначим Е её точку пересечения с продолжением стороны АС данного треугольни-

34

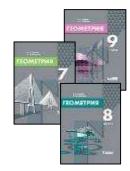
Геометрия, 7-9

ка. Углы CBE и BCD равны как внутренние накрест лежащие углы при параллельных прямых BE и CD и секущей BC. Углы BEC и DCA равны как соответственные углы при параллельных прямых BE и CD и секущей CE. Следовательно, в треугольнике BEC угол B равен углу E. Значит, треугольник BEC равнобедренный, BC = EC. По следствию из теоремы о пропорциональных отрезках имеем:

$$\frac{AD}{DB} = \frac{AC}{CE} = \frac{AC}{BC}.$$

Исторические сведения

Фалес Милетский (около 624—547 гг. до н. э.) считается одним из родоначальников греческой философии и науки. Он сделал ряд открытий в астрономии, первым сформулировал и доказал ряд важных геометрических теорем, среди которых: теорема о равенстве вертикальных углов; признак равенства треугольников по стороне и двум прилежащим к ней углам; теорема о равенстве углов при основании равнобедренного треугольника и др.


Он научился определять расстояние от берега до корабля, для чего использовал приведённую выше теорему. Легенда рассказывает о том, что Фалес, будучи в Египте, поразил фараона Амасиса тем, что сумел точно установить высоту пирамиды, дождавшись момента, когда длина тени палки стала равной высоте палки, и тогда измерил длину тени пирамиды.

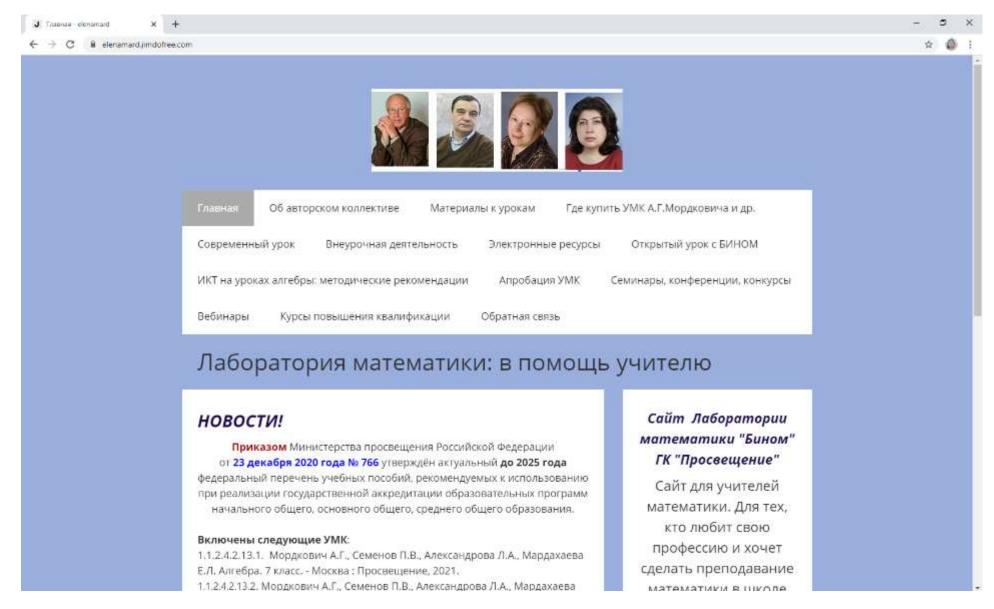
Вопросы

- 1. Сформулируйте теорему Фалеса.
- 2. Обобщением каких теорем является теорема Фалеса?
- 3. Как разделить отрезок на *п* равных частей?
- 4. Что называется отношением двух отрезков?
- 5. Какие отрезки называются пропорциональными?
- 6. Сформулируйте теорему о пропорциональных отрезках.

Авторы:

Смирнов В.А., Смирнова И.М.

• Содержится исторический и занимательный материал, направленный на повышение интереса к изучению предмета.



Методическая поддержка на сайте издательства

Методическая поддержка на авторском сайте

О внесении изменений в федеральный перечень учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, утверждённый приказом Министерства просвещения Российской Федерации от 20.05.2020 г. № 254

1.1.2.4.1.11.1 1.1.2.4.1.11.2	Математика	Истомина Н.Б., Горина О.П., Тихонова Н.Б.	5 6	АО «Издательство «Просвещение»	Конобеева Т.А., Бондаренко Р.А., Кожанова А.П., Павлова Л.А.	До 1 июля 2025 года
1.1.2.4.1.3.1 1.1.2.4.1.3.2	Математика	Петерсон Л.Г., Дорофеев Г.В.	5 6	ООО «БИНОМ. Лаборатория знаний»; АО «Издательство «Просвещение»		От 20 мая 2020 года № 254
1.1.2.4.2.13.1 1.1.2.4.2.13.2 1.1.2.4.2.13.3	Алгебра	Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.	7 8 9	ООО «БИНОМ. Лаборатория знаний»; АО «Издательство «Просвещение»		От 20 мая 2020 года № 254
1.1.2.4.2.11.1 1.1.2.4.2.11.2 1.1.2.4.2.11.3	Алгебра	Петерсон Л.Г., Агаханов Н.,Х., Петрович А.Ю. и др.	7 8 9	ООО «БИНОМ. Лаборатория знаний»; АО «Издательство «Просвещение»		От 20 мая 2020 года № 254
1.1.2.4.3.10.1 1.1.2.4.3.10.2 1.1.2.4.3.10.3	Геометрия	Смирнов В.А., Смирнова И.М.	7 8 9	ООО «БИНОМ. Лаборатория знаний»; АО «Издательство «Просвещение»		От 20 мая 2020 года № 254
1.1.3.4.1.25.1 1.1.3.4.1.25.2	Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа	Мордкович А.Г., Семенов П.В., Александрова Л.А., Мардахаева Е.Л.	10 11	АО «Издательство «Просвещение»	Польшакова О.Е., Еремченко И.А., Кожанова А.П., Кочагина М.Н.	До 28 июня 2025 года

СПАСИБО ЗА ВНИМАНИЕ!

Мардахаева Елена Львовна

Обратная связь:

89167987219

kaf.matematika@gmail.com

Авторский сайт:

https://elenamard.jimdo.com

Сайт издательства:

http://prosv.ru http://lbz.ru

Группа компаний «Просвещение»

Адрес: 127473, г. Москва, ул. Краснопролетарская, д. 16, стр. 3, подъезд 8, бизнес-центр «Новослободский»

Горячая линия: vopros@prosv.ru