«ІТ-КУБ» МОУ гимназия № 87 г. Краснодар

ФЕДЕРАЛЬНАЯ СЕТЬ ДЕТСКИХ ЦЕНТРОВ IT-ТВОРЧЕСТВА

ПРЕИМУЩЕСТВА ИСПОЛЬЗОВАНИЯ ЯЗЫКА ПРОГРАММИРОВАНИЯ РҮТНОN ПРИ ПОДГОТОВКЕ К КЕГЭ ПО ИНФОРМАТИКЕ

Макаренко Руслан Юрьевич Преподаватель ЦЦОД «ІТ-Куб» МОУ гимназия № 87

БАЗОВЫЕ ЗНАНИЯ

- Основные типы алгоритмических конструкций
 - Линейные вычислительные алгоритмы
 - Разветвляющиеся алгоритмы
 - Циклические алгоритмы
 - Вложенные циклы
- Операции и функции работы с символьными переменными
 - Функции в языках программирования
 - Работа с массивами

БАЗОВЫЕ ЗНАНИЯ В РҮТНО N

- Правила создания и именования переменных, типы данных
 - Математические операции
 - Условный оператор if..elif..else
 - Оператор цикла for
 - Оператор цикла while
 - Работа с коллекциями
 - Создание собственных функций
 - Рекурсия
 - Подключение дополнительных модулей
 - Работа с файлами

Пример 15 номер ОГЭ информатика

• Напишите программу, которая в последовательности натуральных чисел определяет максимальное число, кратное 5. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 5. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — максимальное число, кратное 5

СТАНДАРТНЫЙ АЛГОРИТМ

```
редеральная сеть детских
интровит-творчества
```

```
n = int(input())
mx = 0
for i in range(n):
    number = int(input())
    if number % 5 == 0 and number > mx:
        mx = number
print(mx)
```

```
# введем количество чисел
# переменная для хранения максимума
# цикл для перебора п чисел
# вводим новое число
# проверка условия
# если условие верно – новый максимум
# выводим результат
```

Пример 15 номер ОГЭ информатика

• Напишите программу, которая в последовательности натуральных чисел определяет максимальное число, кратное 5. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 5. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — максимальное число, кратное 5

ИСПОЛЬЗОВАНИЕ СПИСКА

```
n = int(input())
result = []
for i in range(n):
    number = int(input())
    result.append(number if number % 5 == 0 else 0)
print(max(result))
```

введем количество чисел
создаем пустой список
цикл для перебора п чисел
вводим новое число
добавляем подходящие числа в список
выводим результат

Пример 15 номер ОГЭ информатика

• Напишите программу, которая в последовательности натуральных чисел определяет максимальное число, кратное 5. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 5. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — максимальное число, кратное 5

ИСПОЛЬЗОВАНИЕ СПИСОЧНОГО ВЫРАЖЕНИЯ

numbers = [int(input()) for _ in range(int(input()))]
print(max([number if number % 5 == 0 else 0 for number in numbers]))

Пример 2 номер КЕГЭ информатика

• Логическая функция F задаётся выражением ($w \land y$) $\lor (x \to w \equiv y \to z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
			1	0
1			1	0
1		1	1	0

СТАНДАРТНОЕ РЕШЕНИЕ

```
ФЕДЕРАЛЬНАЯ СЕТЬ ДЕТСКИХ
ЦЕНТРОВ ІТ-ТВОРЧЕСТВА
```

Пример 2 номер КЕГЭ информатика

• Логическая функция F задаётся выражением ($w \land y$) \lor ($x \rightarrow w \equiv y \rightarrow z$). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
			1	0
1			1	0
1		1	1	0

\mathbf{X}	\mathbf{Y}	${f Z}$	W
O	1	Ο	O
1	O	O	O
1	Ο	1	O
1	1	1	0

Пример 2 номер КЕГЭ информатика

• Логическая функция F задаётся выражением ($w \land y$) $\lor (x \to w \equiv y \to z)$. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

?	?	?	?	F
			1	0
1			1	0
1		1	1	0

АЛЬТЕРНАТИВНОЕ РЕШЕНИЕ

from itertools import product

```
print('x y z w')
for x, y, z, w in product([0, 1], repeat=4):
   if not ((w and y) or ((x <= w) == (y <= z))):
      print(x, y, z, w)</pre>
```

Полезные функции библиотеки itertools

itertools.product

Размещение с повторениями

from itertools import product

for i in product('abc', repeat=2):
 print(".join(i), end=' ')

aa ab ac ba bb bc ca cb cc

Полезные функции библиотеки itertools

itertools.permutations

Перестановки

from itertools import permutations

for i in permutations('abc'): print(".join(i), end=' ')

abc acb bac bca cab cba

from itertools import permutations

for i in permutations('abbc'):
 print(".join(i), end=' ')

abbc abcb abcb acbb acbb babc bacb bbac bbca bcba babc bacb bbac bbca bcba cabb cabb cabb cbab cbba cbba

Полезные функции библиотеки itertools

itertools.accumulate

Аккумулирование сумм

from itertools import accumulate

lst = [1, 2, 3, 4, 5] print(*accumulate(lst))

1 3 6 10 15

Пример 8 номер КЕГЭ информатика

• Определите количество пятизначных чисел, записанных в девятеричной системе счисления, которые не начинаются с нечетных цифр, не оканчиваются цифрами 1 или 8, а также содержат в своей записи не более одной цифры 3.

from itertools import product

```
cnt = 0
for x in product('012345678', repeat=5):
    s = ".join(x)
    if s[0] in '2468' and s[-1] in '0234567' and x.count('3') <= 1:
        cnt += 1
print(cnt)</pre>
```


Пример 8 номер КЕГЭ информатика

• Определите количество пятизначных чисел, записанных в девятеричной системе счисления, которые не начинаются с нечетных цифр, не оканчиваются цифрами 1 или 8, а также содержат в своей записи не более одной цифры 3.

from itertools import product

```
cnt = 0
for x in product('2468', '012345678', '012345678', '012345678', '0234567'):
    cnt += 1 if x.count('3') <= 1 else 0
print(cnt)</pre>
```


Пример 12 номер КЕГЭ информатика

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 84 идущих подряд цифр 9? В ответе запишите полученную строку.

```
НАЧАЛО
ПОКА нашлось (33333) ИЛИ нашлось (999)
ЕСЛИ нашлось (33333)
ТО заменить (33333, 99)
ИНАЧЕ заменить (999, 3)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```



```
s = '9' * 84
while '33333' in s or '999' in s:
    if '33333' in s:
        s = s.replace('33333', '99', 1)
    else:
        s = s.replace('999', '3', 1)
print(s)
```

Пример 14 номер КЕГЭ информатика

Значение арифметического выражения 343¹⁵¹⁵ – 6 · 49¹⁵²⁰ + 5 · 49¹⁵¹⁰ – 3 · 7¹⁵³⁰ – 1550 записали в системе счисления с основанием 7. Определите количество значащих нулей в записи этого числа.

```
 n = 343 ** 1515 - 6 * 49 ** 1520 + 5 * 49 ** 1510 - 3 * 7 ** 1530 - 1550   s = "   while n > 0:   s += str(n \% 7)   n /\!\!\!/= 7   print(s.count('0'))
```


Пример 17 номер КЕГЭ информатика

В файле содержится последовательность чисел. Элементы последовательности могут принимать целые значения от -100 000 до 100 000 включительно. Определите количество пар последовательности, в которых сумма элементов меньше минимального положительного элемента последовательности, кратного 19. Гарантируется, что такой элемент в последовательности есть. В ответе запишите количество найденных пар, затем абсолютное значение максимальной из сумм элементов таких пар. В данной задаче под парой подразумевается два подряд идущих элемента последовательности.


```
with open('17.txt') as input_file:
    lst = [int(x) for x in input_file]
mn_19 = min([x for x in lst if x % 19 == 0 and x > 0])
result = []
for i in range(len(lst) - 1):
    if lst[i] + lst[i + 1] < mn_19:
        result.append(lst[i] + lst[i + 1])
print(len(result), abs(max(result)))</pre>
```

Пример 16 номер КЕГЭ информатика

Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = 2 при n < 3;
```

$$F(n) = 2 \times F(n-2) - F(n-1) + 2$$
, если $n > 2$ и при этом n чётно;

$$F(n) = 2 \times F(n-1) - F(n-2) - 2$$
, если $n > 2$ и при этом n нечётно.

Чему равно значение функции F(17)?

```
def F(n):

if n < 3: return 2

if n > 2 and n % 2 == 0: return 2 * F(n - 2) - F(n - 1) + 2

return 2 * F(n - 1) - F(n - 2) - 2
```


print(F(17))

Пример 23 номер КЕГЭ информатика

Исполнитель преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:

- 1. Вычти 2
- 2. Найди целую часть от деления на 2

Первая из них уменьшает число на экране на 2, вторая заменяет число на экране на целую часть от деления числа на 2. Программа для исполнителя – это последовательность команд.

Сколько существует программ, для которых при исходном числе 28 результатом является число 1, и при этом траектория вычислений содержит число 10?

```
def f(start, end):
    if start < end: return 0
    if start == end: return 1
    return f(start - 2, end) + f(start // 2, end)</pre>
```


print(f(28, 10) * f(10, 1))

Пример 24 номер КЕГЭ информатика

Текстовый файл состоит из символов N, O и P.

Определите максимальное количество подряд идущих последовательностей символов NPO или PNO в прилагаемом файле. Искомая последовательность должна состоять только из троек NPO, или только из троек PNO, или только из троек NPO и PNO в произвольном порядке их следования.
Для выполнения этого задания следует написать программу.


```
with open('24.txt') as input_file:
    s = input_file.read()
s = s.replace('NPO', '1').replace('PNO', '1')
s = s.replace('P', ' ').replace('N', ' ').replace('O', ' ')
s = s.split()
mx = max(map(len, s))
print(mx)
```

Пример 25 номер КЕГЭ информатика

Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:

- символ «?» означает ровно одну произвольную цифру;
- символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405.

Среди натуральных чисел, не превышающих 10⁸ , найдите все числа, соответствующие маске 12*4?65, делящиеся на 161 без остатка.

В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце – соответствующие им результаты деления этих чисел на 161.

for x in range(0, 100):
 for y in range(10):
 s = '12' + str(x) + '4' + str(y) + '65'
 if int(s) % 161 == 0:
 print(s, int(s) // 161)

1234065 7665 12214265 75865 12294765 76365 12504065 77665 12584565 78165 12874365 79965 12954865 80465

Пример 25 номер КЕГЭ информатика

Назовём маской числа последовательность цифр, в которой также могут встречаться следующие символы:

- символ «?» означает ровно одну произвольную цифру;
- символ «*» означает любую последовательность цифр произвольной длины; в том числе «*» может задавать и пустую последовательность.

Например, маске 123*4?5 соответствуют числа 123405 и 12300405.

Среди натуральных чисел, не превышающих 10⁸, найдите все числа, соответствующие маске 12*4?65, делящиеся на 161 без остатка.

В ответе запишите в первом столбце таблицы все найденные числа в порядке возрастания, а во втором столбце – соответствующие им результаты деления этих чисел на 161.

from fnmatch import fnmatch

for x in range(0, 10 ** 8, 161): if fnmatch(str(x), '12*4?65'): print(x, x // 161) 1234065 7665

12214265 75865

12294765 76365

12504065 77665

12584565 78165

12874365 79965

12954865 80465

12004965 74565

Контакты

Романченко Наталия Викторовна

Руководитель ЦЦОД "ІТ-куб"

Телефон: +7 (861) 991-43-61

Электронная почта: it-kub_gimnaziya87@mail.ru Адрес: г. Краснодар, ул. Бульварное Кольцо, д.9

График работы: понедельник - пятница с 9:00 до 17:00

