Тема урока. РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ

<u>ЦЕЛИ УРОКА</u>

Познавательные:

- закрепить и систематизировать знания о квадратных уравнениях в ходе выполнения упражнений;
- отработать навыки нахождения корней квадратного уравнения разными способами
- Применить навыки решения квадратных уравнений в других областях человеческого знания.

Регулятивные:

- развитие приёмов умственной деятельности, логического мышления, памяти, внимания, умения сопоставлять,
 - анализировать, делать выводы;
- уметь проводить классификацию уравнений по общему виду;
- уметь выделять общее и находить различия;
- уметь проводить взаимоконтроль и самоконтроль;

Коммуникативные:

- уметь работать в группах и парах, развивая взаимовыручку,
- умение выслушивать мнения товарищей, отстаивать свою точку зрения.

МАТЕМАТИКА – ЭТО ЯЗЫК НА КОТОРОМ ГОВОРЯТ ВСЕ ТОЧНЫЕ НАУКИ!

Н.И. Лобачевский

Предмет математики настолько серьезен, что полезно не упустить случая делать его немного занимательным...

Б. Паскаль

Мы

Млекопитающие

Мотивация

Мышление мозг (абстрактное у человека)

МАТЕМАТИКА

1. Теоретическая разминка

Выберите верное утверждение:

- 1. Квадратное уравнение $ax^2+bx+c=0$ называется неполным, если a=1.
- 2. Квадратное уравнение не имеет корней, если D=0.
- 3. Уравнение вида x^2 = а всегда имеет два корня.
- 4. Квадратным уравнением называется уравнение вида $ax^2 + bx + c = 0$ при $a \neq 0$
- 5. Приведенное квадратное уравнение имеет один корень.

2. Теоретическая разминка

- 1. Выпишите в порядке возрастания номера полного квадратного уравнения.
- 2. Выпишите номер уравнения у которого нет корней.
- 3. Выпишите номер полного приведенного уравнения.
- 4. Выпишите в порядке возрастания номера неполного квадратного уравнения.
- 5. Выпишите номер уравнения, которое не является квадратным.

1.
$$x^2 = -9$$

$$2. x^2 - 5x - 4 = 0$$

$$3.5x^2 - 4x = 0$$

4.
$$5x + 4=0$$

5.
$$5x^2 - 4x + 1=0$$

Ответы: 1. 4

2. 2512134

РЕШИТЕ УРАВНЕНИЕ:

1.
$$4x^2 - 5x + 1 = 0$$

2.
$$4x^2 - x - 5 = 0$$

$$3.5x^2 - 4x - 1=0$$

4.
$$(5-4x)^2=1$$

5.
$$p^2 + 2pq + q^2 = 1$$

Фенотипы первого поколения	Домина	Доминантный	
Генотипы первого поколения	Aa ×		Aa
	Гаметы	A (p)	a (q)
Случайное оплодотворение	A (p)	AA (p²)	Aa (pq)
	a (q)	Aa (pq)	aa (q²)
Генотипы второго поколения	AA (p²)	2Aa (2pq)	aa (q²)
поколения го	мозиготы		ые Рецессивные ы гомозиготы

Большинство растений популяциях животных половым размножаются свободном путем при скрещивании, обеспечивающем равновероятную встречаемость гамет. Равновероятную встречаемость гамет при свободном скрещивании панмиксией, называют такую популяцию панмиктической.

МАТИК Г. Харди и немецкий Вайнберг независимо врач друг OT друга сформулировали подчиняется закон, которому распределение **ТОМОЗИГОТ** гетерозигот панмиктической популяции, И выразили его виде алгебраической формулы.

Фенотипы первого поколения	Домина	Доминантный	
Генотипы первого поколения	Aa ×		Aa
	Гаметы	A (p)	a (q)
Случайное оплодотворение	A (p)	AA (p²)	Aa (pq)
	a (q)	Aa (pq)	aa (q²)
Генотипы второго поколения	AA (p²)	2Aa (2pq)	aa (q²)
Фенотипы второго б поколения	Доминантны гомозиготы		ые Рецессивные ы гомозиготы

Частоту встречаемости гамет с доминантным аллелем обозначают *р,* а частоту встречаемости гамет рецессивным аллелем а -Частоты этих аллелей популяции выражаются формулой p + q = 1 (или 100%). Поскольку в панмиктической популяции встречаемость гамет равновероятна, можно определить И частоты генотипов.

Харди и Вайнберг, суммируя данные о частоте генотипов, образующихся в результате равновероятной встречаемости гамет, вывели формулу частоты генотипов в панмиктической популяции:

$$AA + 2Aa + aa = 1$$

 $p^2 + 2pq + q^2 = 1$

Фенотипы первого поколения	Домина	Доминантный		
Генотипы первого поколения	Aa	a ×	Aa	<u> </u>
	Гаметы	A (p)	a (q)	
Случайное оплодотворение	A (p)	A.A (p²)	Aa (pq)	
	a (q)	Aa (pq)	aa (q²)	B C
Генотипы второго поколения	AA (p²)	2Aa (2pq)	aa (q²)	4
Фенотипы второго поколения	Доминантны гомозиготы		ые Рецессивные ы гомозиготы	C p

Закон Харди-Вайнберга:
В идеальной популяции частота встречаемости генотипов и частота встречаемости аллелей генов из поколения в поколение неменяется.
Однако действие этого закона выполняется при соблюдении

- следующих условий:

 1. Неограниченно большая численность популяции, обеспечивающая свободное скрещивание особей друг с другом;
- 2. Все генотипы одинаково жизнеспособны, плодовиты и не подвергаются отбору;
- 3. Прямые и обратные мутации возникают с одинаковой частотой или настолько редко, что ими можно пренебречь; 4. Отток или приток новых генотипов в популяцию отсутствует.

Частота генов (генотипов) в популяции есть величина постоянная и не изменяется из поколения в поколение

Равновесие генных частот:

$$p^2 + 2pq + q^2 = 1$$
,

где

- р² частота доминантных гомозигот(АА)
- 2рq частота гетерозигот (Aa)
- q² частота рецессивных гомозигот (аа).

Биологические задачи на закрепление закона

В популяции пятой школы - 1680 учащихся с темными волосами (доминантный признак) и 320 учащихся со светлыми волосами. Определить а) частоту встречаемости доминантного и рецессивного генов окраски волос б) число гетерозигот среди учеников с темными волосами. $p^2 + 2pq + q^2 = 1 = 2000$

1680 + 320 = 2000 особей всего в популяции.

$$q^2 = \frac{320}{2000} = 0{,}16$$
 $q = \sqrt{0{,}16} = 0{,}4$ - частота встречаемости гомозигот по рецессивному

p = 1 - q = 1 - 0,4 = 0,6 - частота встречаемости гомозигот по доминантному признаку.

 $2pq = 2 \times 0,6 \times 0,4 = 0,48 = 48\%$ из 1680 будет гетерозигот.

«Человеку, изучающему математику, часто полезно решать одну и ту же задачу тремя различными способами. Чем решать три-четыре различных задач. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается ответ»

У. Сойер

!!!Домашнее задание!!! Составить пять квадратных уравнений, которые можно решить разными способами и выбрать более рациональный.

Подведем итоги:

На полуострове Нушагак в 1824 г. добыто чернобурых – 1 лисиц (ВВ), сиводушек – 7 (Вb), красных лисиц 121 (bb). Определите частоты генотипов, частоты аллелей, сравните наблюдаемые соотношения с теоретическими.

```
Разделим численность особей с каждым генотипом на общую численность (129) и получим следующие частоты генотипов: BB: 1/129 = 0,0078; Bb: 7/129 = 0,054; bb: 121/129 = 0,938. Определим частоты аллелей. Поскольку каждая особь имела два аллеля (одинаковых или разных), то общее число аллелей равно удвоенному числу особей в выборке – 258. p(B) = 2B + 7B = 9 B, 9/258 = 0,0349, g = 1 - 0,0349 = 0,9651.
```

Ожидаемое соотношение генотипов должно быть:

```
BB = 0.0349^2 = 0.0012; Bb = 2 \times 0.0349 \times 0.9651 = 0.0674 u bb = 0.9651^2 = 0.9314.
```

В популяции

- x 0,0012; 0,0012 x 129 = 0,15 черных;
- x 0,0674; $0,0676 \times 129 = 9$ сиводушек;
- х 0,9314; 0,9314 х 129 = 120 красных лисицы.

СПАСИБО ЗА ВНИМАНИЕ! ДА ПРЕБУДЕТ С ВАМИ СИЛА!

