
Итоги ЕГЭ-2024 по химии

Беспалов Александр Валерьевич, к.х.н., доцент кафедры органической химии и технологий Кубанского государственного университета, председатель предметной комиссии по проверке ЕГЭ по химии Краснодарского края

Динамика результатов ЕГЭ по химии за последние 3 года

		Годы проведения ГИА		
№ п/п	Участников набравших балл	2022 г.	2023 г.	2024 г.
1	ниже минимального	10,45	11,65	13,75
	балла, %			
2	от минимального балла	33,92	33,9	32,76
	до 60 баллов, %			
3	от 61 до 80 баллов, %	34,07	32,21	29,88
4	от 81 до 100 баллов, %	21,56	22,25	23,61
5	Средний тестовый балл	62,34	61,84	61,06

Период проведения проверки экзаменационных работ (по каждому проведенному периоду ЕГЭ от ЧЧ.ММ ДД.ММ.ГГ)

проверки Досрочный период:

12.04.2024 с 09.00 до 11.00

Основной период:

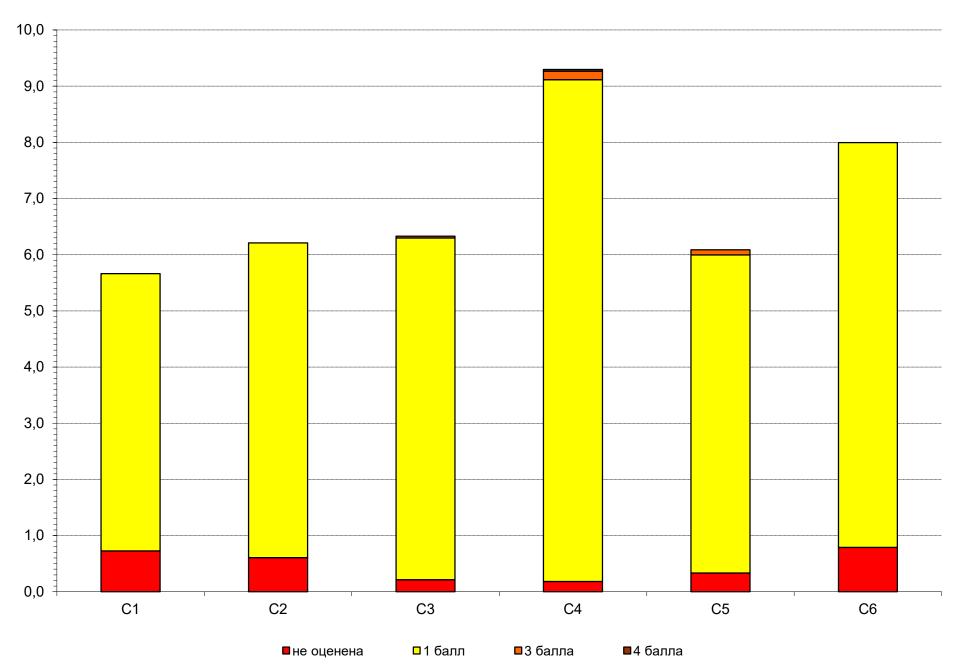
25.05.2024 с 09.00 до 17.00

26.05.2024 с 09.00 до 17.00

27.05.2024 с 09.00 до 17.00

Резервные дни основного периода:

19.06.2024 с 09.00 до 17.00


22.06.2024 с 09.00 до 11.00

Дополнительный период:

06.07.2024 с 09.00 до 17.00

Состав предметной комиссии по основному месту работы:	Кол-во членов ПК	% от общего состава ПК
• учителя общеобразовательных организаций	43	70,49
• преподаватели вузов	17	27,87
• преподаватели организаций СПО	0	0
• специалисты институтов повышения квалификации / институтов развития образования	1	1,64
• другое (указать, что именно)	0	0
Состав ПК, всего экспертов, из них:	Кол-во членов ПК	% от общего состава ПК
• экспертов, имеющих статус ведущего эксперта	3	4,92
• экспертов, имеющих статус старшего эксперта	15	24,59
• экспертов, имеющих статус основного эксперта	43	70,49

Работа ПК при проверке развернутых ответов	
• общее количество работ	3247
• общее количество непустых работ	3001
• общее количество проверок первым и вторым экспертами	6002
• процент работ, направленных на третью проверку (без учета незаполненных экзаменационных работ в части развернутых ответов)	5,00 % (150 работ)
• количество экспертов, осуществлявших третьи проверки, их статусы	13 экспертов со статусом «старший эксперт» или «ведущий эксперт»
• количество проверок апелляционных работ	10
• количество перепроверок по решению ОИВ	0
Общее количество экспертов ПК, задействованных при проверке работ на разных этапах проведения ЕГЭ	59
Общее количество экспертов ПК, задействованных при проверке апелляционных работ	5
Работа ПК при рассмотрении апелляций	
• общее количество поданных апелляций	10
• количество удовлетворенных апелляций в отношении изменения баллов за развернутые ответы (указать основные причины изменений), из них:	6

Анализ выполнения заданий открытого варианта ЕГЭ-2024 по органической химии

10	Представление о классификации органи-	3.3	4.2	Б	1	2-3
	ческих веществ. Номенклатура					
	органических соединений (систематическая)					
	и тривиальные названия важнейших					
	представителей классов органических					
	веществ.					

Установите соответствие между общей формулой класса органических веществ и веществом, которое принадлежит к этому классу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ОБЩАЯ ФОРМУЛА

A) C_nH_{2n-6}

10

- \mathbf{F}) $\mathbf{C}_{\mathbf{n}}\mathbf{H}_{2\mathbf{n}-2}$
- B) C_nH_{2n-8}

ВЕЩЕСТВО

- () изопрен
- 2) толуол
- 3) стирол
- 4) изобутан

(68,3 - 92,5)

75,6

213	75,56%
243	3,86%
231	2,57%
312	2,57%

Запишите в таблицу выбранные цифры под соответствующими буквами.

A	Б	В

11	Основные положения теории химического	3.1	8.1	Б	1	2-3
	строения органических соединений	3.2				
	А.М. Бутлерова. Углеродный скелет орга-					
	нической молекулы. Кратность химичес-					
	кой связи. σ - и π -связи. sp^3 -, sp^2 -, sp -					
	гибридизации орбиталей атомов углерода.					
	Зависимость свойств веществ от					
	химического строения молекул. Гомологи.					
	Гомологический ряд. Изомерия и изомеры.					
	Понятие о функциональной группе.					
	Ориентационные эффекты заместителей					

Из предложенного перечня выберите два вещества, молекулы которых содержат одну или несколько гидроксильных групп.

(41,4 - 86,8)

77,2

1) бензол

11

- 2) этилацетат
- 3) ацетон
- 4) этиленгликоль
- 5) фенол

Запишите номера выбранных ответов.

45	77,17%
35	7,40%
24	4,18%
23	2,89%
15	2,89%

	1 1					
12	Химические свойства углеводородов: ал-	3.5 - 3.15	8.2, 9	Π	1	2–3
	канов, циклоалканов, алкенов, алкадиенов,					
	алкинов, аренов.					
	Химические свойства кислородсодержа-					
	щих соединений: спиртов, фенола, альде-					
	гидов, кетонов, карбоновых кислот, слож-					
	ных эфиров, жиров, углеводов					

12 Из предложенного перечня выберите схемы всех реакций, для определения продуктов которых следует применить правило Марковникова.

1)
$$CH_2=CH-CH_3+H_2O \xrightarrow{H^+}$$

2)
$$CH_2=CH-CH_3+HBr \rightarrow$$

3)
$$CH_2=CH-CH_2-CH_3+HCl \rightarrow$$

4)
$$CH_3$$
- CH = CH - CH_3 + HCl \rightarrow

5)
$$CH_2=CH-CH_3+H_2 \xrightarrow{Pt}$$

Запишите номера выбранных ответов.

$$(22,3 - 61,2)$$

123	55,95%
234	11,58%
23	8,36%
1234	5,79%
1235	4,18%

Правило Марковникова — при присоединении галогеноводородов или воды к несимметричным алкенам или алкинам атом водорода присоединяется к наиболее гидрогенизированному (гидрированному) углеродному атому

Правило Зайцева — отщепление атома водорода в реакциях дегидрогалогенирования и дегидратации происходит преимущественно от наименее гидрированного (гидрогенизированного) атома углерода.

	11 / 1 / 2 / 1					
13	Химические свойства жиров. Мыла как	3.14-3.17	8.2, 9	Б	1	2–3
	соли высших карбоновых кислот					
	Химические свойства глюкозы.					
	Дисахариды: сахароза, мальтоза.					
	Восстанавливающие и					
	невосстанавливающие дисахариды.					
	Гидролиз дисахаридов. Полисахариды:					
	крахмал, гликоген. Химические свойства					
	крахмала и целлюлозы.					
	Характерные химические свойства					
	аминов.					
	Аминокислоты и белки. Аминокислоты					
	как амфотерные органические соединения.					
	Основные аминокислоты, образующие					
	белки. Важнейшие способы получения					
	аминов и аминокислот. Химические свой-					
	ства белков: гидролиз, денатурация, ка-					
	чественные (цветные) реакции на белки					

7	_
	•
_	_

Из предложенного перечня выберите два вещества, которые **не подвергаются** гидролизу.

- 1) аминоуксусная кислота
- 2) триэтиламин
- 3) глицилглицин
- 4) крахмал
- 5) тристеарат глицерина

Запишите номера выбранных ответов.

Ответ:		
--------	--	--

(39,1 - 8)

42,5

12	42,44%
24	9,32%
35	9,00%
34	6,75%
45	6,11%
14	5,79%
23	5,14%
13	5,14%
25	4,82%
15	3,86%

Гидролиз — это процесс взаимодействия сложного химического вещества с водой, итогом которого становится разложение молекул этого вещества.

Гидратация — присоединение молекул воды к молекулам или ионам.

14	Химические свойства углеводородов: ал-	3.4-3.9	8.2, 9	П	2	5-7
14	канов, циклоалканов, алкенов, алкадиенов,	3.4 3.5	0.2,)	11	_	3 7
	алкинов, аренов.					
	Реакции замещения галогена на					
	гидроксогруппу. Действие на					
	галогенпроизводные водного и спиртового					
	раствора щёлочи. Взаимодействие					
	дигалогеналканов с магнием и цинком.					
	Использование галогенпроизводных					
	углеводородов при синтезе органических					
	веществ					
	Свободнорадикальный и ионный механиз-					
	мы реакции. Понятие о нуклеофиле и элек-					
	трофиле. Правило Марковникова. Правило					
	Зайцева					

14

Установите соответствие между схемой реакции и продуктом, который преимущественно образуется в результате этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

СХЕМА РЕАКЦИИ

A)
$$C_2H_5Cl + NaOH_{(cпирт.)} \rightarrow$$

Б)
$$C_2H_5Cl + NaOH_{(водн.)} \rightarrow$$

B)
$$C_2H_2 + Na \rightarrow$$

$$\Gamma$$
) $C_2H_5Cl + Na \rightarrow$

ПРОДУКТ РЕАКЦИИ

) этен

2) бутен

3) этан

4) *н*-бутан

5) ацетиленид натрия

6) этанол

ции	49,8 –	74,2
		, ,

74,2

165470,10%16532,57%

Запишите в таблицу выбранные цифры под соответствующими буквами.

A	Б	В	Γ

15	Характерные химические свойства пре-	3.10-3.15	8.2, 9	П	2	5–7
	дельных одноатомных и многоатомных					
	спиртов, фенола, альдегидов, карбоновых					
	кислот, сложных эфиров. Важнейшие спо-					
	собы получения кислородсодержащих					
	органических соединений					

Установите соответствие между схемой реакции и веществом X, принимающим участие в этой реакции: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой. (43,6 - 71,1)

СХЕМА РЕАКЦИИ

A)
$$CH_3OH \xrightarrow{X} HCHO$$

Б)
$$CH_3CH_2OH \xrightarrow{X} C_2H_4$$

B)
$$CH_3CH_2OH \xrightarrow{X} CH_3CH_2OK$$

$$\Gamma$$
) CH₃OH \xrightarrow{X} CH₃OCH₃

ВЕЩЕСТВОX

- 1) Cu(OH)2
- 2) CuO
- 3) KOH (p-p)
- 4) K₂CO₃
- 5) H₂SO₄ (конц.)
- 6) K

53,4

2565	44,69%
2535	8,04%
2534	2,89%
1535	2,25%
2531	2,25%

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

15

A	Б	В	Γ

16	Генетическая связь между классами орга-	3.20	8.2	Π	1	2-3
	нических соединений					

16 Задана следующая схема превращений веществ:

$$X o$$
 хлорэтан $o Y o$ метилпропан

Определите, какие из указанных веществ являются веществами X и Y.

- 1) пропан
- н-бутан
- 3) этилен
- 4) 2-хлорпропан
- 5) 1,2-дихлорэтан

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

	X	Y
Ответ:		

(57,8 –	77,7)
74,3	

32	74,28%
34	5,79%
31	5,14%
54	3,54%

17	Химическая реакция. Классификация хи-	1.5	4.3	Б	1	2-3
	мических реакций в неорганической и органической химии. Закон сохранения массы веществ					

17 Из предложенного перечня выберите все типы реакций, к которым можно отнести взаимодействие водорода с оксидом меди(II).

- 1) реакция замещения
- 2) окислительно-восстановительная реакция
- 3) обратимая реакция
- 4) гетерогенная реакция
- 5) каталитическая реакция

Запишите номера выбранных ответов.

Ответ: ______.

\ . = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(41	,3 -	- 69	.7
---	-----	------	------	----

53,1

124	53,05%
24	9,32%
1245	6,11%
245	4,18%
12	4,18%
125	3,22%
234	2,89%

18	Скорость реакции, её зависимость от раз-	1.6	1.3	Б	1	2-3
	личных факторов					

18

Из предложенного перечня выберите **все** реакции, которые при одинаковых температуре и концентрации кислот протекают с большей скоростью, чем взаимодействие оксида цинка с раствором уксусной кислоты.

- 1) взаимодействие оксида цинка с соляной кислотой
- 2) взаимодействие оксида цинка с раствором масляной кислоты
- 3) взаимодействие растворов сульфида натрия и уксусной кислоты
- 4) взаимодействие растворов гидроксида натрия и уксусной кислоты
- взаимодействие растворов гидроксида бария и азотной кислоты
 Запишите номера выбранных ответов.

Ответ:				

(30,4-79,3)

41,2

1345	41,16%
145	27,01%
15	9,32%
345	6,11%
135	3,22%
134	2,57%

	T		_	_	1	T _
25	Химия в повседневной жизни. Правила	3.18,	1.4,	Б	1	2–3
	безопасной работы с едкими, горючими	4.1 - 4.4	1.5,			
	и токсичными веществами, средствами		2.2,			
	бытовой химии. Химия и здоровье. Химия		14, 15			
	в мелипине. Химия и сельское хозяйство.				 	
	Химия в промышленности. Химия и энер-					
	гетика: природный и попутный нефтяной					
	газы, их состав и использование. Состав					
	нефти и её переработка (природные источ-					
	ники углеводородов).					
	Химия и экология. Химическое загрязне-					
	ние окружающей среды и его последствия.					
	Охрана гидросферы, почвы, атмосферы,					
	флоры и фауны от химического загряз-					
	нения. Проблема отходов и побочных					
	продуктов. Альтернативные источники					
	энергии. Общие представления о промыш-					
	ленных способах получения химических					
	веществ (на примере производства амми-					
	ака, серной кислоты). Чёрная и цветная					
	металлургия. Стекло и силикатная про-					
	мышленность. Промышленная органичес-					
	кая химия. Сырьё для органической					
	промышленности. Строение и структура					
	полимеров. Зависимость свойств полиме-					
	ров от строения молекул. Основные					
	способы получения высокомолекулярных					
	соединений: реакции полимеризации и по-					
	ликонденсации. Классификация волокон					

25

Установите соответствие между мономером и полимером, образующимся при его полимеризации: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

(40,5 - 85,4)

MOHOMEP

- А) хлорэтен
- Б) 2-хлорбутадиен-1,3
- В) бутадиен-1,3

ПОЛИМЕР

- 1) натуральный каучук
- 2) поливинилхлорид
- 3) дивиниловый каучук
- 4) хлоропреновый каучук

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

A	Б	В

243 47,91% 14,47% 423 241 9,00% 123 5,14% 4,18% 143 2,89% 431 2,89% 213 231 2,57%

32	Генетическая связь между классами орга-	3.20	7.1,	В	5	10-15
	нических соединений		8.2, 13			

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

толуол
$$\xrightarrow{\text{КМnO}_4 \text{ (водн. p-p)}, \ t^\circ}$$
 $X_1 \longrightarrow C_6 H_6 \longrightarrow X_2 \xrightarrow{\text{Cl}_2, \ hv} X_3 \longrightarrow \bigcirc$

При написании уравнений реакций указывайте преимущественно образующиеся продукты, используйте структурные формулы органических веществ.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа:	
1) $+ 2KMnO_4 \xrightarrow{t^o} + 2MnO_2 + KOH + H_2O$	
2) $+ KOH \xrightarrow{t^{\circ}} \{ K_2CO_3 \}$	
3) <	
4) $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ + CI ₂ $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ —CI + HCI	•
5) 2	

33	Нахождение молекулярной формулы орга-	5.8	10.5,	В	3	10–15
	нического вещества по его плотности		14			
	и массовым долям элементов, входящих					
	в его состав, или по продуктам сгорания;					
	установление структурной формулы ор-					
	ганического вещества на основе его					
	химических свойств или способов полу-					
	чения					

При сгорании 29,2 г органического вещества А образовалось 26,88 л (н.у.)

1 49 - (т.у.) заота и 25 2 г воды. Известно, что молекула

(29,9 - 40,6) 33

вещества А имеет неразветвлённый углеродный скелет, содержит три 40.6 функциональные группы, при этом азотосодержащие группы максимально

удалены друг от друга. Вещество А способно реагировать как с соляной

кислотой, так и с гидроксидом натрия.

На основании данных условия задачи:

- 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу вещества А;
- 2) составьте структурную формулу вещества А, которая однозначно отражает порядок связи атомов в его молекуле;
- 3) напишите уравнение реакции вещества А с избытком соляной кислоты (используйте структурные формулы органических веществ).

Вариант ответа:

Проведены необходимые вычисления, и найдена молекулярная формула вещества А:

$$C_xH_yO_zN_k$$

$$n(CO_2) = 26,88 / 22,4 = 1,2$$
 моль

$$n(C) = n(CO_2) = 1,2$$
 моль

$$n(N_2) = 4,48 / 22,4 = 0,2$$
 моль

$$n(N) = 0,4$$
 моль

$$n(H_2O) = 25,2 / 18 = 1,4$$
 моль

$$n(H) = 2n(H_2O) = 2,8$$
 моль

$$m(C) = 14.4 \Gamma$$

$$m(H) = 2.8 r$$

$$m(O) = 6.4 r$$

$$n(O) = 6.4 / 16 = 0.4 \text{ моль}$$

$$x:y:z:k=1,2:2,8:0,4:0,4$$

Простейшая формула: C₃H₇ON

Молекулярная формула: $C_6H_{14}O_2N_2$

Приведена структурная формула вещества А:

Записано уравнение реакции:

$$H_2N-CH_2-CH_2-CH_2-CH-COOH + 2HCl \longrightarrow NH_2$$

Примеры сложных для оценивания решений

32

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

толуол
$$\xrightarrow{\text{КМnO}_4 \text{ (водн. p-p), } t^\circ} X_1 \longrightarrow C_6 H_6 \longrightarrow X_2 \xrightarrow{\text{Cl}_2, hv} X_3 \longrightarrow \bigcirc$$

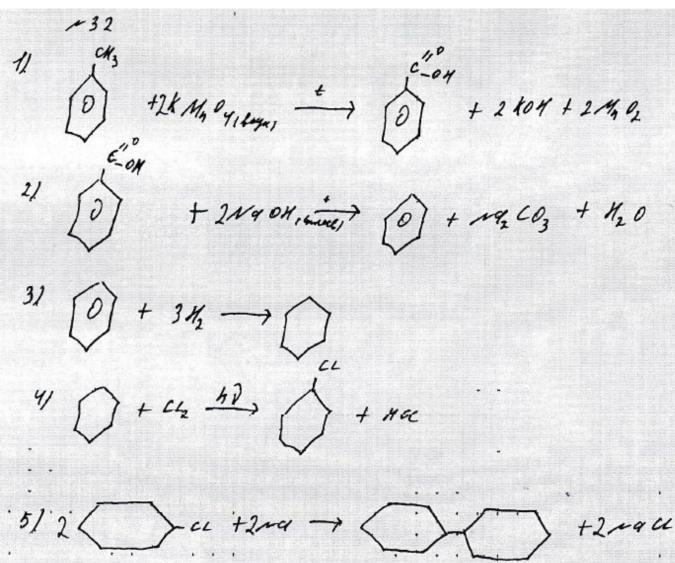
При написании уравнений реакций указывайте преимущественно образующиеся продукты, используйте структурные формулы органических веществ.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа:	
1) $+ 2KMnO_4 \xrightarrow{t^o} + 2MnO_2 + KOH + H_2O$	
2) $+ KOH \xrightarrow{t^{\circ}} \{ K_2CO_3 \}$	
3) < Тат С	
4) $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ + CI ₂ $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ -CI + HCI	•
5) 2	

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	0	2	1	1	3	-	7
Эксперт 2	0	2	2	4	3	-	11
Эксперт 3	-	-	-	2	-	-	

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	0	1	2	3	1	-	7
Эксперт 2	0	2	2	5	1	-	10
Эксперт 3	-	-	-	4	-	_	

1.
$$\bigcirc G^{MS} + 2KH_{M}O_{M} \rightarrow \bigcirc G^{COOK} + 2M_{M}O_{Z} + KOH + H_{Z}O$$


1. $\bigcirc G^{COOK} + KOH \rightarrow K_{Z}CO_{S} + \bigcirc \bigcirc$

3. $\bigcirc G + 3H_{Z} \rightarrow \bigcirc \bigcirc$

4. $\bigcirc G^{MS} + 2KH_{M}O_{M} \rightarrow G^{COOK} + 2M_{M}O_{Z} + KOH + H_{Z}O$

5. $2\bigcirc G^{MS} + KOH \rightarrow K_{Z}CO_{S} + \bigcirc \bigcirc$

5. $2\bigcirc G^{MS} + KOH \rightarrow G^{MS} \rightarrow G^{MS} + G^{MS} \rightarrow G^{MS}$

º позиции ценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	2	4	3	1	0	12
Эксперт 2	2	2	4	5	3	0	12
Эксперт 3	-	-	-	3	3	-	

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$X_1 \xrightarrow{Cl_2, hv} X_2 \longrightarrow$$
 бензиловый спирт $\longrightarrow X_3 \xrightarrow{NaHCO_3} X_4 \longrightarrow C_6H_6$

При написании уравнений реакций указывайте преимущественно образующиеся продукты, используйте структурные формулы органических веществ.

Содержание верного ответа и указания по оцениванию

(допускаются иные формулировки ответа, не искажающие его смысла)

Вариант ответа:

Написаны уравнения реакций, соответствующие схеме превращений:

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	2	2	5	3	-	14
Эксперт 2	2	2	2	3	0	-	9
Эксперт 3	-	-	_	5	2	-	

Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$X_1 \xrightarrow{KOH \text{ (спирт. p-p), } t^{\circ}} X_2 \xrightarrow{H_2O, Hg^{2+}} X_3 \longrightarrow$$
ацетат аммония \longrightarrow $Ba(OH)_2, t^{\circ}$ $X_4 \xrightarrow{t^{\circ}}$ ацетон

При написании уравнений реакций указывайте преимущественно образующиеся продукты, используйте структурные формулы органических веществ.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа: Написаны уравнения реакций, соответствующие схеме превращений:	
1) CH ₂ -CH ₂ + 2KOH	
2) CH \equiv CH + H ₂ O $\xrightarrow{\text{Hg}^{2^+}}$ CH ₃ -C $\stackrel{\frown}{\text{H}}$	
3) $CH_3-C_1^O + 2[Ag(NH_3)_2]OH \xrightarrow{f^o} CH_3-C_1^O + 2Ag + 3NH_3 + H_2O$ ONH_4	
4) $2CH_3-C_5^{O}$ + $Ba(OH)_2 \xrightarrow{f^{\circ}} (CH_3COO)_2Ba + 2NH_3 + 2H_2O$ ONH_4	
5) $(CH_3COO)_2Ba \xrightarrow{f^\circ} CH_3 - C - CH_3 + BaCO_3$	

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	0	3	2	-	-	7
Эксперт 2	2	0	3	4	-	-	9
Эксперт 3	-	-	-	4	-	-	

My 4)
$$2CH_3 - C = 0$$
, $H_4 + Ba(OH)_2 \Rightarrow CH_3 + CA_3 + CH_3 + 2H_2O$, $H_3 + 2H_2O$.

5) $(CH_3COO)_2Ba \stackrel{C}{\Rightarrow} CH_3 - C - CH_3 + BaCO_3$

1) $CH = CH_2 + KOH_{(cruym)} \stackrel{C}{\Rightarrow} CH_3 - CH_3 + KOH_{(cruym)} \stackrel{C}$

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	0	0	2	2	0	-	4
Эксперт 2	0	0	2	0	0	-	2
Эксперт 3	-	-	-	2	-	-	

(32) X1 to X2	
1) CH3-CH2 + KOH - SCH3-CH2-DDA + KCH	
Xz ON X3	
32 X, 1° X2 1) CMs - CMe + KOM - S CM3 - CM2 - DDM + KCl xel xel xel xel xel xel xel x	
3) (122-C=0 1 1/12 - CN2-C=0	
19W X4	
3) Ch3-C=0 + NH3 -> Ch3-C=0 412Ch3-C=0 + MH3 -> Ch3-C=0 412Ch3-C=0 + ABa(ON)2 -> CH3-C=0 5) Ch3-C=0 5) Ch3-C=0 5) Ch3-C=0 5) Ch3-C=0 5) Ch3-C=0 5)	· K20
51 de 100 CH3 - c 200 - 13a	
Ols - e =0	
5) 0 Ba - CO CH3 + Ba, O2 + CO	
5) 0 Ba - 5 CM3 - C - CM3 + Ba, O2 + CO CM3 - e- 6 0	

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	2	4	2	2	-	12
Эксперт 2	2	2	4	4	2	-	14
Эксперт 3	-	-	-	3	-	-	

32. 1
$$e^{1} \cdot e^{1} \cdot e^{1}$$

- 33
- При сжигании образца дипептида массой 2,64 г получено 1,792 л (н.у.) углекислого газа, 1,44 г воды и 448 мл (н.у.) азота. При гидролизе данного дипептида в присутствии соляной кислоты образуется только одна соль. На основании данных условия задания:
- 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу дипептида;
- 2) составьте возможную структурную формулу этого дипептида, которая однозначно отражает порядок связи атомов в его молекуле;
- 3) напишите уравнение реакции гидролиза дипептида в присутствии соляной кислоты (используйте структурную формулу органического вещества).

Содержание верного ответа и указания по оцениванию

(допускаются иные формулировки ответа, не искажающие его смысла)

Вариант ответа:

Найдено количество вещества продуктов сгорания:

$$n(CO_2) = 1,792 / 22,4 = 0,08$$
 моль; $n(C) = 0,08$ моль

$$n(H_2O) = 1,44 / 18 = 0,08$$
 моль; $n(H) = 0,08 \cdot 2 = 0,16$ моль

$$n(N_2) = 0,448 / 22,4 = 0,02$$
 моль; $n(N) = 0,02 \cdot 2 = 0,04$ моль

Установлены масса и количество вещества атомов кислорода, определена молекулярная формула вещества:

$$m(C + H + N) = 0.08 \cdot 12 + 0.16 \cdot 1 + 0.04 \cdot 14 = 1.68 r$$

$$m(O) = 2,64 - 1,68 = 0,96 \text{ }\Gamma$$

$$n(O) = 0.96 / 16 = 0.06 \text{ моль}$$

$$n(C): n(H): n(N): n(O) = 0.08: 0.16: 0.04: 0.06 = 4:8:2:3$$

Молекулярная формула — $C_4H_8N_2O_3$

Составлена структурная формула дипептида:

$$NH_{2}$$
— CH_{2} — C — NH — CH_{2} — C
 OH

Составлено уравнение реакции гидролиза в присутствии соляной кислоты:

$$NH_2-CH_2-C-NH-CH_2-C < O OH + H_2O + 2HCl - 2Cl[H_3N-CH_2-COOH]$$

33) Dano: № позиции m (benjamba) = 2,642. D=Vn ; D=m; m=J.M оценивания Эксперт 1 V(CO2) = 1,7921 (H.4) V(CO2) = 1,7921 = 0,08 Mores Эксперт 2 Эксперт 3 m(C) = 0,08:12 mars = 0,962. Al20) = 18 mars = 0,08 mons; Al2 2 M/20) =0,08.22 m (HeO)= 444 2. Q 448m20,448L. V(N2)=0,4481(4.4) = 0,1611016 M. q. -? Me = 04481 = 0,02 Mon; M) = 0,02.2=904 m(N) = 904.142056 1. 100 = 2,64-0,96-0,56-0,16=0,962. $100 = \frac{0.962}{162006} = 0.06 \text{ Morth.}$ $100 = \frac{0.962}{162006} = 0.06 \text{ Morth.}$ $100 = \frac{0.962}{162006} = 0.08:0,16:0,04:0,06$ 100 = 0.08:0,16:0,04:0,063. CM2 - C-NH-CH2-C-ON+H2O+LHCU -> 2 CH2-C-OH MA2

44

Сумма

баллов

14

5

3

Pemerue: 1) n (COa) = Vm = 1,792 u = 0,08 monts n(C) 2 n(CO2) 20,08 monts m(C) = n M = 0,08 mons. 12 /mons = 0,96 2 2) n (H2O) = m = 1,442 = 0,08 mans n (H) = 2 n (H2D) = 0,16 mars m(4) = 0, m (H) 2 n. M = 0,16 monts 3) V (Na) 2 448 me · 0,001 = 4,4 0,448 x $n(N_2)$ $= \frac{0,448 \, n}{22,4 \, m/mode}$ $n(N_2)$ $= \frac{1}{2} \frac{0,448 \, n}{22,4 \, m/mode} = 0,02 \, mode$ n(N) 22n(N2) 2 0,04 mons m (N) = n M 20,04.14 = 0,562 4) m(0) = 2,642 - 0,962 -0,162 -0,562 =0,96 n (0) ~ m = 0,062 ~ 0,06 mall s) n(c): n(H): n(N): n(O) = 0,08:0,16:0,04:0,06 = 2:4:1:1,5 C4H8 N2O3 - ATT more by represent tropulyina СИ2-СИ2-N-Ë-С-04 - СТруктурном формициа

CH2-CH2-N-E-C-04 + HCl -> CH2-CH2-N-E-E-OH NH3 CE

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	2	2	3	3	0	12
Эксперт 2	2	2	2	3	1	0	10
Эксперт 3	-	-	-	-	1	-	

- 33
- При сжигании образца дипептида массой 3,2 г получили 2,688 л (н.у.) углекислого газа, 2,16 г воды и 448 мл (н.у.) азота. При гидролизе данного дипептида в присутствии гидроксида калия образуется только одна соль. На основании данных условия задания:
- 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу дипептида;
- 2) составьте возможную структурную формулу этого динептида, которая однозначно отражает порядок связи атомов в его молекуле;
- 3) напишите уравнение реакции гидролиза дипептида в присутствии гидроксида калия (используйте структурную формулу органического вещества).

Содержание верного ответа и указания по оцениванию

(допускаются иные формулировки ответа, не искажающие его смысла)

Вариант ответа:

Найдено количество вещества продуктов сгорания:

$$n(CO_2) = 2,688 / 22,4 = 0,12$$
 моль; $n(C) = 0,12$ моль

$$n(H_2O) = 2{,}16 / 18 = 0{,}12$$
 моль; $n(H) = 0{,}12 \cdot 2 = 0{,}24$ моль

$$n(N_2) = 0,448 / 22,4 = 0,02$$
 моль; $n(N) = 0,02 \cdot 2 = 0,04$ моль

Установлены масса и количество вещества атомов кислорода, определена молекулярная формула вещества:

$$m(C + H + N) = 0.12 \cdot 12 + 0.24 \cdot 1 + 0.04 \cdot 14 = 2.24 r$$

$$m(O) = 3,2 - 2,24 = 0,96 \text{ r}$$

$$n(O) = 0.96 / 16 = 0.06$$
 моль

$$n(C): n(H): n(N): n(O) = 0.12: 0.24: 0.04: 0.06 = 6: 12: 2: 3$$

Молекулярная формула вещества — $C_6H_{12}N_2O_3$

Составлена структурная формула дипептида:

$$NH_{2}-CH-C-NH-CH-C$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$OH$$

$$CH$$

$$OH$$

Составлено уравнение реакции гидролиза в присутствии гидроксида калия:

Допускается запись формулы дипептида, образованного остатками β-аланина.

33) Dano:	Pennenne:
m (quenens 499) = 3,25	n(cO2) = 26881 20 2,6881 = 0,12 MOND
V (COz) = 2,6881	n(c)= 0,12 mons
m (M20) = 2,161	n (M20) = 2,16 = 0,12 mons
V (N2) = 448 um	n(M) = 0,12 · 2 = 0,24 mons
gunennup-?	V(N2) = 0,4481
	$V(N_2) = 0,448 \Lambda$ $N(N_2) = \frac{0,448 \Lambda}{22,4 \Lambda/4006} = 0,02 \text{ mono}$
	$n(N) = 0,02 \cdot 2 = 0,04 \text{ mons}$
m (C) = 0,12 mone	· 121/mars = 1,445
m (M) = 0,24 mos	26 · 11/110116 = 0,24 F
	out · 14 r/mons = 0,56 r
M(0) = 3,25-1,	445-0,245-0,565= 0,965 = 0,06 mon6
n(0) = 18 / MOAL	= 0,06 usub
n(C): n(M): n(0): n(N): 0,12 mons: 0,24 mons: 0,08 mons:
: 0,04 molls = .	3:6:1,5:1 = 6:12:3:2
C6 M12 O3 N2 -	ионекушерная формуна
CM3 - CM - CO -	СМ2 - СМ - С"ОМ - сперукнурмая фермуна
NM ₂	WM ₂
CM3 -CM -CO - CM NN2	12- CN -C", ON + 2KOM -> 2CMs- CM-C", OK +
+ M20	

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	2	3	4	3	0	8
Эксперт 2	2	2	3	5	1	0	9
Эксперт 3	-	-	-	-	1	-	

33

При сгорании 29,2 г органического вещества А образовалось 26,88 л (н.у.) оксида углерода(IV), 4,48 л (н.у.) азота и 25,2 г воды. Известно, что молекула вещества А имеет неразветвлённый углеродный скелет, содержит три функциональные группы, при этом азотосодержащие группы максимально удалены друг от друга. Вещество А способно реагировать как с соляной кислотой, так и с гидроксидом натрия.

На основании данных условия задачи:

- 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу вещества А;
- 2) составьте структурную формулу вещества А, которая однозначно отражает порядок связи атомов в его молекуле;
- 3) напишите уравнение реакции вещества А с избытком соляной кислоты (используйте структурные формулы органических веществ).

Вариант ответа: Проведены необходимые вычисления, и найдена молекулярная формула вещества А: $C_xH_vO_zN_k$ $n(CO_2) = 26.88 / 22.4 = 1.2$ моль $n(C) = n(CO_2) = 1.2$ моль $n(N_2) = 4.48 / 22.4 = 0.2 \text{ моль}$ n(N) = 0.4 моль $n(H_2O) = 25.2 / 18 = 1.4$ моль $n(H) = 2n(H_2O) = 2.8$ моль $m(C) = 14.4 \Gamma$

$$m(C) = 14.4 r$$

$$m(H) = 2.8 r$$

$$m(O) = 6.4 \text{ r}$$

$$n(O) = 6.4 / 16 = 0.4$$
 моль

$$x:y:z:k=1,2:2,8:0,4:0,4$$

Простейшая формула: C₃H₇ON

Молекулярная формула: $C_6H_{14}O_2N_2$

Приведена структурная формула вещества А:

Записано уравнение реакции:

$$H_2N-CH_2-CH_2-CH_2-CH_2-CH-COOH + 2HCI \longrightarrow NH_2$$

$$\longrightarrow ClH_3N-CH_2-CH_2-CH_2-CH_2-CH_2-CH-COOH NH_3CI$$

N 33 June Deeno: mf. 64/A/= 29,25; 11 CO21= 26,881 = 1,2 Mars V(CO2) = 26,882; 4/N2/= 4,48 m MIC)= MICQ)= 1,2 mars. m/K201=15,25 M(M201= m(M20). 4/3 02 14 11 H2 0)= 25,25 = 64 nong M1 #1 = 2 n (1/2 0 1= 2,8 mous 1/2/= 23,4 1/ mars = gruens n1c1: n(x): n(0): n(m) 12: 28: 94: 94 6 Hyy B 12 - novery sycret presume

№ позиции оценивания	1	2	3	4	5	6	Сумма баллов
Эксперт 1	2	2	4	3	1	0	12
Эксперт 2	2	2	4	5	3	0	12
Эксперт 3	-	-	-	3	3	-	

10. Изменения в КИМ ЕГЭ 2025 года в сравнении с КИМ 2024 года

Изменения структуры и содержания КИМ отсутствуют.

Внесены коррективы в модель задания 17: вместо задания на выбор нескольких вариантов ответа будет использовано задание на установление соответствия между позициями двух множеств.

Химическая реакция. Классификация хи-	1.5	4.3	Б	1	2–3
мических реакций в неорганической и ор-					
ганической химии. Закон сохранения					
массы веществ					
	мических реакций в неорганической и органической химии. Закон сохранения	мических реакций в неорганической и органической химии. Закон сохранения	мических реакций в неорганической и ор- ганической химии. Закон сохранения	мических реакций в неорганической и органической химии. Закон сохранения	мических реакций в неорганической и органической химии. Закон сохранения

(29,4 - 69,7)

17 Из предложенного перечня выберите все типы реакций, к которым можно отнести взаимодействие водорода с оксидом меди(II). 124

- реакция замещения
- 2) окислительно-восстановительная реакция
- 3) обратимая реакция
- 4) гетерогенная реакция
- 5) каталитическая реакция

Запишите номера выбранных ответов.

Ответ: ______.

	,
24	9,32%
1245	6,11%
245	4,18%
12	4,18%
125	3,22%
234	2.89%

53.05%

- 17 Из предлуженного перечня выберите все реакции, которые являются окислительно восстановительными.
 - 1) взаимодействие сульфида калил с перманганатом калия
 - 2) взаимодействие концентрированной серной кислоты с хлоридом натрия

17

- 3) взаимодействие при кагуевании хлорида аммония и нитрита натрия
- 4) взаимодействие при нагревании оксида кремния с карбонатом натрия
- 5) взаимодействие и одоводородной кислоты с дихроматом натрия

Запишите номера выбранных ответся.

к которым она относится: к каждой позиции, обозначенной буквой,

подберите соответствующую позицию, обозначенную цифрой.

ХИМИЧЕСКАЯ РЕАКЦИЯ

- А) дегидрирование этана
- Б) гидратация ацетилена
- В) взаимодействие уксусной кислоты и этилового спирта

ТИПЫ РЕАКЦИЙ

- 1) разложения, каталитическая
- 2) окислительно-восстановительная, экзотермическая
- 3) обмена, обратимая
- 4) замещения, гетерогенная

Запишите в таблицу выбранные цифры под соответствующими буквами.

Установите соответствие между химической реакцией и типами реакций,

Ответ:

A	Б	В

Спасибо за внимание!