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Метод интервалов
Методом интервалов решают неравенства вида

f(x)>0, (f(x)<0, f(x)≤0 , 𝒇(𝒙) ≥ 𝟎)

Алгоритм метода интервалов.

1. Находим область определения функции f(x) и промежутки, на которых функция

непрерывна.

2. Находим нули функции, то есть решения уравнения  f(x)=0. 

3. На числовую прямую наносим область определения и нули функции f(x),   причём в случае 

строгого знака неравенства нули «выкалываем».

4.  Определяем интервалы знакопостоянства функции f(x). 

5. В соответствии с заданным знаком неравенства, записываем ответ.  

Если точка является нулем функции или не принадлежит области определения функции, 

это НЕ ОЗНАЧАЕТ, что при переходе через такую точку функция автоматически 
меняет знак, а промежутки знакопостоянства чередуются. 



Пример 1. Решить неравенство 
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Обратная замена:
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Отмечаем полученные точки и область определения на координатной оси и 
находим знак функции на каждом интервале области определения

𝒙1-1 0 𝟐− 𝟐

++−−++

Ответ:  −∞; − 2 ∪ − 2; −1 ∪ 0 ∪ 1; 2 ∪ ( 2; +∞).

Выбираем интервалы, где 𝑓(x) ≥ 0



Пример 2.            Решить неравенство 4
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Нули функции 4
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Выбираем интервалы, где 𝑓(x) ≤ 0
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1) При 0 ( ) 1a x  первый множитель отрицателен, значит для

верного решения неравенства необходимо, чтобы ( ) ( )f x g x

2) При ( ) 1a x  первый множитель положителен, значит для

верного решения неравенства необходимо, чтобы ( ) ( )f x g x

Сведение  показательных неравенств  к рациональным 
неравенствам методом знакотождественных множителей 

(метод рационализации)



Решите неравенство: 

Решение:
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Воспользуемся методом рационализации 



Решите неравенство: 

Решение: 

Преобразуем левую часть
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Воспользуемся методом рационализации 



Рассмотрим 1 случай
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Рассмотрим 2 случай
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Объединяем два случая и получаем ответ

−𝟒; −𝟐, 𝟓 ∪ −𝟐 ∪ [𝟎; +∞)



Спасибо за внимание


